descr_check(); it wasn't useful. Change the type argument of the
various _get() methods to PyObject * because the call signature of
tp_descr_get doesn't guarantee its type.
object is not a real str or unicode but an instance
of a subclass, construct the output via looping
over __getitem__. This guarantees that the result
is the same for function==None and function==lambda x:x
This doesn't happen for tuples, because filtertuple()
uses PyTuple_GetItem().
(This was discussed on SF bug #665835).
* Removed the ifilter flag wart by splitting it into two simpler functions.
* Fixed comment tabbing in C code.
* Factored module start-up code into a loop.
Documentation:
* Re-wrote introduction.
* Addede examples for quantifiers.
* Simplified python equivalent for islice().
* Documented split of ifilter().
Sets.py:
* Replace old ifilter() usage with new.
tickle the 2.2.2 __cmp__ bug test_datetime used to tickle, so the
workarounds for that bug no longer make sense in the test suite (which I'm
still trying to keep as closely in synch as possible with Zope3's
version).
__ne__ no longer complain if they don't know how to compare to the other
thing. If no meaningful way to compare is known, saying "not equal" is
sensible. This allows things like
if adatetime in some_sequence:
and
somedict[adatetime] = whatever
to work as expected even if some_sequence contains non-datetime objects,
or somedict non-datetime keys, because they only call __eq__.
It still complains (raises TypeError) for mixed-type comparisons in
contexts that require a total ordering, such as list.sort(), use as a
key in a BTree-based data structure, and cmp().
the tests will remain in sync:
"""
Tres discovered a weird bug when a datetime is pickled, caused by the
shadowing of __year, __month, __day and the use of proxies.
Here's a quick fix and a quick unit test. I don't quite understand
why this wasn't caught by the pickling unit tests.
"""
atomically, but deepcopy() didn't support this at all.
I don't see any reason for this, so I'm adding ClassType
to the set of types that are deep-copied atomically.
* Fixed typo in exception message for times()
* Filled in missing times_traverse()
* Document reasons that imap() did not adopt a None fill-in feature
* Document that count(sys.maxint) will wrap-around on overflow
* Add overflow test to islice()
* Check that starmap()'s argument returns a tuple
* Verify that imap()'s tuple re-use is safe
* Make a similar tuple re-use (with safety check) for izip()
Right now the test cases create a files and a directory in the temp.
directory. Raymond suggested checking files in to the test/ directory,
simplifying the setup/teardown methods; is that worth doing?
Apparently MAC OS 9 doesn't have POSIX-conforming timestamps. A test
fails as a result, but at least for this specific test it's easy enough
to get the POSIX epoch out of it.
guarantee to keep valid pointers in its slots.
tests: Moved ExtensionSaver from test_copy_reg into pickletester, and
use it both places. Once extension codes get assigned, it won't be
safe to overwrite them willy nilly in test suites, and ExtensionSaver
does a thorough job of undoing any possible damage.
Beefed up the EXT[124] tests a bit, to check the smallest and largest
codes in each opcode's range too.
blindly assumed that tp_as_sequence->sq_item always returns
a str or unicode object. This might fail with str or unicode
subclasses.
This patch checks whether the object returned from __getitem__
is a str/unicode object and raises a TypeError if not (and
the filter function returned true).
Furthermore the result for __getitem__ can be more than one
character long, so checks for enough memory have to be done.
module. This increases code coverage of Python/sysmodule.c
from 68% to 77% (on Linux).
The script doesn't exercise the error branch that handles an evil
or lost sys.excepthook in Python/pythonrun.c::PyErr_PrintEx().
Also this script might not work on Jython in its current form.
From SF patch #662807.
extension implemented flush() was fixed. Scott also rewrite the
zlib test suite using the unittest module. (SF bug #640230 and
patch #678531.)
Backport candidate I think.
are actually getting generated. Add helpered method
ensure_opcode_in_pickle to do a correct job checking for that. Changed
test_long1(), test_long4(), and test_short_tuples() to use it.
huge. On older Linux systems, the C library's strtod() apparently
gives up before seeing the end of the string when it sees so many
digits that it thinks the result must be Infinity. (It is wrong, BTW
-- there could be an "e-10000" hiding behind 10,000 digits.) The
shorter shuge still tests what it's testing, without relying on
strtod() doing a super job.
exception, ResourceDenied. This is used to distinguish between tests that
are skipped for other reasons (platform support, missing data, etc.) from
those that are skipped because a "resource" has not been enabled. This
prevents those tests from being reported as unexpected skips for the
platform; those should only be considered unexpected skips if the resource
were enabled.
loops. Renamed DATA and BINDATA to DATA0 and DATA1. Included
disassemblies, but noted why we can't test them. Added XXX comment to
cPickle about a mysterious comment, where pickle and cPickle diverge
in how they number PUT indices.
Assorted code cleanups; e.g., sizeof(char) is 1 by definition, so there's
no need to do things like multiply by sizeof(char) in hairy malloc
arguments. Fixed an undetected-overflow bug in readline_file().
longobject.c: Fixed a really stupid bug in the new _PyLong_NumBits.
pickle.py: Fixed stupid bug in save_long(): When proto is 2, it
wrote LONG1 or LONG4, but forgot to return then -- it went on to
append the proto 1 LONG opcode too.
Fixed equally stupid cancelling bugs in load_long1() and
load_long4(): they *returned* the unpickled long instead of pushing
it on the stack. The return values were ignored. Tests passed
before only because save_long() pickled the long twice.
Fixed bugs in encode_long().
Noted that decode_long() is quadratic-time despite our hopes,
because long(string, 16) is still quadratic-time in len(string).
It's hex() that's linear-time. I don't know a way to make decode_long()
linear-time in Python, short of maybe transforming the 256's-complement
bytes into marshal's funky internal format, and letting marshal decode
that. It would be more valuable to make long(string, 16) linear time.
pickletester.py: Added a global "protocols" vector so tests can try
all the protocols in a sane way. Changed test_ints() and test_unicode()
to do so. Added a new test_long(), but the tail end of it is disabled
because it "takes forever" under pickle.py (but runs very quickly under
cPickle: cPickle proto 2 for longs is linear-time).
anymore either, so don't. This also allows to get rid of obscure code
making __getnewargs__ identical to __getstate__ (hmm ... hope there
wasn't more to this than I realize!).
longer needs to be public, and shoudn't be public because all datetime
objects are immutable. The Python implementation has changed
accordingly, but still need to change the C implementation.
__module__ is the string name of the module the function was defined
in, just like __module__ of classes. In some cases, particularly for
C functions, the __module__ may be None.
Change PyCFunction_New() from a function to a macro, but keep an
unused copy of the function around so that we don't change the binary
API.
Change pickle's save_global() to use whichmodule() if __module__ is
None, but add the __module__ logic to whichmodule() since it might be
used outside of pickle.
error handers in the Unicode codecs: Negative
positions are treated as being relative to the end of
the input and out of bounds positions result in an
IndexError.
Also update the PEP and include an explanation of
this in the documentation for codecs.register_error.
Fixes a small bug in iconv_codecs: if the position
from the callback is negative *add* it to the size
instead of substracting it.
From SF patch #677429.
classes have a __reduce__ that returns (self.__class__,
self.__getstate__()). tzinfo.__reduce__() is a bit smarter, calling
__getinitargs__ and __getstate__ if they exist, and falling back to
__dict__ if it exists and isn't empty.
for this iconv() implementation in the init function.
For encoding: use a byteswapped version of the input if
neccessary.
For decoding: byteswap every piece returned by iconv()
if neccessary (but not those pieces returned from the
callback)
Comment out test_sane() in the test script, because
whether this works depends on whether byte swapping
is neccessary or not (an on Py_UNICODE_SIZE)
types. The special handling for these can now be removed from save_newobj().
Add some testing for this.
Also add support for setting the 'fast' flag on the Python Pickler class,
which suppresses use of the memo.
only get run by test_pickle.py now (& not by test_cpickle.py). This
should be undone when protocol 2 is implemented in cPickle too.
test_cpickle should pass again.
Re-arrange the imports into "Python normal form."
Add test of the getUserData() / setUserData() methods, including the
NODE_CLONED callback.
Added support for renameNode() and getInterface().
Changed Node.unlink() so an unlinked node is not rendered completely
unusable by setting childNodes to None.
Element.removeAttributeNode() is slightly less destructive.
Added test for the wholeText attribute.
Added a test for Text.replaceWholeText().
Fixed to properly create Element in test of user data
Rename a local variable so it makes sense when viewed as a sequence.
Unlink a few documents when we're done with them.
Added tests to define the behavior of the cloneNode() and importNode()
mehods, especially in the "difficult" cases of document and
document-type nodes.
Filled in a few more of the other cloneNode() tests.
NodeList.item() does not exist before Python 2.2, since it requires being
able to create subtypes of list. Use the subscript syntax instead.
Added a test that minidom documents can be pickled and unpickled.
Closes SF bug #609641.
Fill in an empty test, making sure we get the whitespace right for the
data attribute of a processing instruction.
Added checks for a few more invariants for processing instructions.
testProcessingInstruction(): The length attribute of the NodeList
interface is not implemented for Python 2.0, 2.1, so only use
len() to test the length.
testSchemaType(): New test, testing just the minimum of schemaType
support; this is different from the test_xmlbuilder version of the
test since it doesn't rely on using a specific builder, and the
builders support different levels of DTD support.
Add tests for the removeNamedItem() and removeNamedItemNS() methods of
the NamedNodeMap instances found on Element nodes.
These do not pass; the fix will be committed shortly.
Added support for the DOM Level 3 (draft) Element.setIdAttribute*() methods.
Do more to avoid creating new Attr nodes, so that attributes do not lose
their ID-ness when set using setIdAttribute*().
compare against "the other" argument, we raise TypeError,
in order to prevent comparison from falling back to the
default (and worse than useless, in this case) comparison
by object address.
That's fine so far as it goes, but leaves no way for
another date/datetime object to make itself comparable
to our objects. For example, it leaves Marc-Andre no way
to teach mxDateTime dates how to compare against Python
dates.
Discussion on Python-Dev raised a number of impractical
ideas, and the simple one implemented here: when we don't
know how to compare against "the other" argument, we raise
TypeError *unless* the other object has a timetuple attr.
In that case, we return NotImplemented instead, and Python
will give the other object a shot at handling the
comparison then.
Note that comparisons of time and timedelta objects still
suffer the original problem, though.
This gives much the same treatment to datetime.fromtimestamp(stamp, tz) as
the last batch of checkins gave to datetime.now(tz): do "the obvious"
thing with the tz argument instead of a senseless thing.
checked in two days agao:
Refactoring of, and new rules for, dt.astimezone(tz).
dt must be aware now, and tz.utcoffset() and tz.dst() must not return None.
The old dt.astimezone(None) no longer works to change an aware datetime
into a naive datetime; use dt.replace(tzinfo=None) instead.
The tzinfo base class now supplies a new fromutc(self, dt) method, and
datetime.astimezone(tz) invokes tz.fromutc(). The default implementation
of fromutc() reproduces the same results as the old astimezone()
implementation, but tzinfo subclasses can override fromutc() if the
default implementation isn't strong enough to get the correct results
in all cases (for example, this may be necessary if a tzinfo subclass
models a time zone whose "standard offset" (wrt UTC) changed in some
year(s), or in some variations of double-daylight time -- the creativity
of time zone politics can't be captured in a single default implementation).
When daylight time ends, an hour repeats on the local clock (for example,
in US Eastern, the clock jumps from 1:59 back to 1:00 again). Times in
the repeated hour are ambiguous. A tzinfo subclass that wants to play
with astimezone() needs to treat times in the repeated hour as being
standard time. astimezone() previously required that such times be
treated as daylight time. There seems no killer argument either way,
but Guido wants the standard-time version, and it does seem easier the
new way to code both American (local-time based) and European (UTC-based)
switch rules, and the astimezone() implementation is simpler.
port the tests to PyUnit and add many tests for error
cases. This increases code coverage in Python/bltinmodule.c
from 75% to 92%. (From SF patch #662807, with
assert_(not fcmp(x, y)) replaced with assertAlmostEqual(x, y)
where possible)
Patch from Brett Cannon:
First, the 'y' directive now handles [00, 68] as a suffix for the
21st century while [69, 99] is treated as the suffix for the 20th
century (this is for Open Group compatibility).
strptime now returns default values that make it a valid date ...
the ability to pass in a regex object to use instead of a format
string (and the inverse ability to have strptime return a regex object)
has been removed. This is in preparation for a future patch that will
add some caching internally to get a speed boost.
case, the test module created is actually a sub-package of 'test', thus
the module is named 'test.areallylongpackage...' - this caused failure.
Replace the hard-coded module names with __name__ attributes, which
correctly reflects any hierarchy.
hoped it would be, but not too bad. A test had to change:
time.__setstate__() can no longer add a non-None tzinfo member to a time
object that didn't already have one, since storage for a tzinfo member
doesn't exist in that case.
From:
69.73% of 294 source lines executed in file ./Modules/_codecsmodule.c
79.47% of 487 source lines executed in file Python/codecs.c
78.45% of 3643 source lines executed in file Objects/unicodeobject.c
To:
70.41% of 294 source lines executed in file ./Modules/_codecsmodule.c
82.75% of 487 source lines executed in file Python/codecs.c
80.76% of 3638 source lines executed in file Objects/unicodeobject.c
This actually unearthed a bug in the handling of None
values in PyUnicode_EncodeCharmap.
into time. This is little more than *exporting* the datetimetz object
under the name "datetime", and similarly for timetz. A good implementation
of this change requires more work, but this is fully functional if you
don't stare too hard at the internals (e.g., right now a type named
"datetime" shows up as a base class of the type named "datetime"). The
docs also need extensive revision, not part of this checkin.
- SLOT1BINFULL() macro: changed this to check for __rop__ overriding
__op__, like binary_op1() in abstract.c -- the latter only calls the
slot function once if both types use the same slot function, so the
slot function must make both calls -- which it already did for the
__op__, __rop__ order, but not yet for the __rop__, __op__ order
when B.__class__ is a subclass of A.__class__.
Also test the refinement added in rev. 2.201 that fixes the problem
reported in SF bug #623669.
Also test a similar provision in abstract.c's binary_op1().
cases, plus even tougher tests of that. This implementation follows
the correctness proof very closely, and should also be quicker (yes,
I wrote the proof before the code, and the code proves the proof <wink>).
Lesson learned: kids should not be allowed to use API's starting
with an underscore :-/
zipimport in 2.3a1 is even more broken than I thought: I attemped
to _PyString_Resize a string created by PyString_FromStringAndSize,
which fails for strings with length 0 or 1 since the latter returns
an interned string in those cases. This would cause a SystemError
with empty source files (and no matching pyc) in the zip archive.
I rewrote the offending code to simply allocate a new buffer and
avoid _PyString_Resize altogether.
Added a test that would've caught the problem.
(or None) now. In 2.3a1 they could also return an int or long, but that
was an unhelpfully redundant leftover from an earlier version wherein
they couldn't return a timedelta. TOOWTDI.
the test set as it only tested with a zip archive in the current directory,
but it doesn't work at all for packages when the zip archive was specified
as an absolute path. It's a real embarrassing bug: a strchr call should
have been strrchr; fever apparently implies dyslexia.
Second stupid bug: the zipimport test failed with a name error
__importer__ (which I had renamed to __loader__ everywhere but here).
I would've sworn I ran the test after that change but that can't be true.
What I don't understand that noone reported a failing test_zipimport.py
before the release of 2.3a1.
suggestion from Guido, along with a formal correctness proof of the
trickiest bit. The intricacy of the proof reveals how delicate this
is, but also how robust the conclusion: correctness doesn't rely on
dst() returning +- one hour (not all real time zones do!), it only
relies on:
1. That dst() returns a (any) non-zero value if and only if daylight
time is in effect.
and
2. That the tzinfo subclass implements a consistent notion of time zone.
The meaning of "consistent" was a hidden assumption, which is now an
explicit requirement in the docs. Alas, it's an unverifiable (by the
datetime implementation) requirement, but so it goes.
understood now: it can't work. Added comments explaining why (it's "the
usual"-- unrepresentable hours in local time --but in a slightly different
guise).
an idea from Guido. This restores that the datetime implementation
never passes a datetime d to a tzinfo method unless d.tzinfo is the
tzinfo instance whose method is being called. That in turn allows
enormous simplifications in user-written tzinfo classes (see the Python
sandbox US.py and EU.py for fully fleshed-out examples).
d.astimezone(tz) also raises ValueError now if d lands in the one hour
of the year that can't be expressed in tz (this can happen iff tz models
both standard and daylight time). That it used to return a nonsense
result always ate at me, and it turned out that it seemed impossible to
force a consistent nonsense result under the new implementation (which
doesn't know anything about how tzinfo classes implement their methods --
it can only infer properties indirectly). Guido doesn't like this --
expect it to change.
New tests of conversion between adjacent DST-aware timezones don't pass
yet, and are commented out.
Running the datetime tests in a loop under a debug build leaks 9
references per test run, but I don't believe the datetime code is the
cause (it didn't leak the last time I changed the C code, and the leak
is the same if I disable all the tests that invoke the only function
that changed here). I'll pursue that next.
- new import hooks in import.c, exposed in the sys module
- new module called 'zipimport'
- various changes to allow bootstrapping from zip files
I hope I didn't break the Windows build (or anything else for that
matter), but then again, it's been sitting on sf long enough...
Regarding the latest discussions on python-dev: zipimport sets
pkg.__path__ as specified in PEP 273, and likewise, sys.path item such as
/path/to/Archive.zip/subdir/ are supported again.
of the timetz case. A tzinfo method will always see a datetimetz arg,
or None, now. In the former case, it's still possible that it will get
a datetimetz argument belonging to a different timezone. That will get
fixed next.
ignore tuple.
The line, "from _random import Random as CoreGenerator", fools the test
code which expects CoreGenerator.__name__ to be "CoreGenerator" instead
of "Random".
Guido has in mind an easier way for users to code this stuff, but the
only tests we have now are for fixed-offset tzinfo classes, and this
stuff is extremely delicate in the endcases (read the new test code
for why: there are holes in time <wink>).
operands have identical tzinfo members (meaning object identity -- "is").
I misunderstood the intent here, reading wrong conclusion into
conflicting clues.
subtraction, work as documented. In the Python implementation,
they weren't calling utcoffset() if both operands had the same
tzinfo object. That's fine if it so happens that the shared
tzinfo object returns a fixed offset (independent of operand),
but can give wrong results if that's not so, and the latter
obtains in a tzinfo subclass instance trying to model both
standard and daylight times. The C implementation was already
doing this "correctly", so we're just adding tests to verify it.
be trusted with years before 1900, so now we raise ValueError if a date or
datetime or datetimetz .strftime() method is called with a year before
1900.
{timetz,datetimetz}.{utcoffset,dst}() now return a timedelta (or None)
instead of an int (or None).
tzinfo.{utcoffset,dst)() can now return a timedelta (or an int, or None).
Curiously, this was much easier to do in the C implementation than in the
Python implementation (which lives in the Zope3 code tree) -- the C code
already had lots of hair to extract C ints from offset objects, and used
C ints internally.
used that.
wrap_strftime(): Removed the most irritating uses of buf.
TestDate.test_ordinal_conversions(): The C implementation is fast enough
that we can afford to check the endpoints of every year. Also added
tm_yday tests at the endpoints.