Each thread specializes a thread-local copy of the bytecode, created on the first RESUME, in free-threaded builds. All copies of the bytecode for a code object are stored in the co_tlbc array on the code object. Threads reserve a globally unique index identifying its copy of the bytecode in all co_tlbc arrays at thread creation and release the index at thread destruction. The first entry in every co_tlbc array always points to the "main" copy of the bytecode that is stored at the end of the code object. This ensures that no bytecode is copied for programs that do not use threads.
Thread-local bytecode can be disabled at runtime by providing either -X tlbc=0 or PYTHON_TLBC=0. Disabling thread-local bytecode also disables specialization.
Concurrent modifications to the bytecode made by the specializing interpreter and instrumentation use atomics, with specialization taking care not to overwrite an instruction that was instrumented concurrently.
* Remove `@suppress_immortalization` decorator
* Make suppression flag per-thread instead of per-interpreter
* Suppress immortalization in `eval()` to avoid refleaks in three tests
(test_datetime.test_roundtrip, test_logging.test_config8_ok, and
test_random.test_after_fork).
* frozenset() is constant, but not a singleton. When run multiple times,
the test could fail due to constant interning.
Dictionary watchers on an object's attributes dictionary
(`object.__dict__`) were not triggered when the managed dictionary used
the object's inline values.
Users want to know when the current context switches to a different
context object. Right now this happens when and only when a context
is entered or exited, so the enter and exit events are synonymous with
"switched". However, if the changes proposed for gh-99633 are
implemented, the current context will also switch for reasons other
than context enter or exit. Since users actually care about context
switches and not enter or exit, replace the enter and exit events with
a single switched event.
The former exit event was emitted just before exiting the context.
The new switched event is emitted after the context is exited to match
the semantics users expect of an event with a past-tense name. If
users need the ability to clean up before the switch takes effect,
another event type can be added in the future. It is not added here
because YAGNI.
I skipped 0 in the enum as a matter of practice. Skipping 0 makes it
easier to troubleshoot when code forgets to set zeroed memory, and it
aligns with best practices for other tools (e.g.,
https://protobuf.dev/programming-guides/dos-donts/#unspecified-enum).
Co-authored-by: Richard Hansen <rhansen@rhansen.org>
Co-authored-by: Victor Stinner <vstinner@python.org>
Users want to know when the current context switches to a different
context object. Right now this happens when and only when a context
is entered or exited, so the enter and exit events are synonymous with
"switched". However, if the changes proposed for gh-99633 are
implemented, the current context will also switch for reasons other
than context enter or exit. Since users actually care about context
switches and not enter or exit, replace the enter and exit events with
a single switched event.
The former exit event was emitted just before exiting the context.
The new switched event is emitted after the context is exited to match
the semantics users expect of an event with a past-tense name. If
users need the ability to clean up before the switch takes effect,
another event type can be added in the future. It is not added here
because YAGNI.
I skipped 0 in the enum as a matter of practice. Skipping 0 makes it
easier to troubleshoot when code forgets to set zeroed memory, and it
aligns with best practices for other tools (e.g.,
https://protobuf.dev/programming-guides/dos-donts/#unspecified-enum).
Add PyConfig_Get(), PyConfig_GetInt(), PyConfig_Set() and
PyConfig_Names() functions to get and set the current runtime Python
configuration.
Add visibility and "sys spec" to config and preconfig specifications.
_PyConfig_AsDict() now converts PyConfig.xoptions as a dictionary.
Co-authored-by: Bénédikt Tran <10796600+picnixz@users.noreply.github.com>
Return -1 and set an exception on error; return 0 if the iterator is
exhausted, and return 1 if the next item was fetched successfully.
Prefer this API to PyIter_Next(), which requires the caller to use
PyErr_Occurred() to differentiate between iterator exhaustion and errors.
Co-authered-by: Irit Katriel <iritkatriel@yahoo.com>
Fix PyEval_GetLocals() to avoid SystemError ("bad argument to
internal function"). Don't redefine the 'ret' variable in the if
block.
Add an unit test on PyEval_GetLocals().
This flag was added as an escape hatch in gh-91401 and backported to
Python 3.10. The flag broke at some point between its addition and now.
As there is currently no publicly known environments that require this,
remove it rather than work on fixing it.
This leaves the flag in the subprocess module to not break code which
may have used / checked the flag itself.
discussion: https://discuss.python.org/t/subprocess-use-vfork-escape-hatch-broken-fix-or-remove/56915/2
PyUnicode_FromFormat() no longer produces the ending \ufffd
character for truncated C string when use precision with %s and %V.
It now truncates the string before the start of truncated multibyte sequences.
This exposes `PyUnstable_Object_ClearWeakRefsNoCallbacks` as an unstable
C-API function to provide a thread-safe mechanism for clearing weakrefs
without executing callbacks.
Some C-API extensions need to clear weakrefs without calling callbacks,
such as after running finalizers like we do in subtype_dealloc.
Previously they could use `_PyWeakref_ClearRef` on each weakref, but
that's not thread-safe in the free-threaded build.
Co-authored-by: Petr Viktorin <encukou@gmail.com>