Sharing mutable (or non-immortal) objects between interpreters is generally not safe. We can work around that but not easily.
There are two restrictions that are critical for objects that break interpreter isolation.
The first is that the object's state be guarded by a global lock. For now the GIL meets this requirement, but a granular global lock is needed once we have a per-interpreter GIL.
The second restriction is that the object (and, for a container, its items) be deallocated/resized only when the interpreter in which it was allocated is the current one. This is because every interpreter has (or will have, see gh-101660) its own object allocator. Deallocating an object with a different allocator can cause crashes.
The dict for the cache of module defs is completely internal, which simplifies what we have to do to meet those requirements. To do so, we do the following:
* add a mechanism for re-using a temporary thread state tied to the main interpreter in an arbitrary thread
* add _PyRuntime.imports.extensions.main_tstate`
* add _PyThreadState_InitDetached() and _PyThreadState_ClearDetached() (pystate.c)
* add _PyThreadState_BindDetached() and _PyThreadState_UnbindDetached() (pystate.c)
* make sure the cache dict (_PyRuntime.imports.extensions.dict) and its items are all owned by the main interpreter)
* add a placeholder using for a granular global lock
Note that the cache is only used for legacy extension modules and not for multi-phase init modules.
https://github.com/python/cpython/issues/100227
This reverts commit 87be8d9.
This approach to keeping the interned strings safe is turning out to be too complex for my taste (due to obmalloc isolation). For now I'm going with the simpler solution, making the dict per-interpreter. We can revisit that later if we want a sharing solution.
This is effectively two changes. The first (the bulk of the change) is where we add _Py_AddToGlobalDict() (and _PyRuntime.cached_objects.main_tstate, etc.). The second (much smaller) change is where we update PyUnicode_InternInPlace() to use _Py_AddToGlobalDict() instead of calling PyDict_SetDefault() directly.
Basically, _Py_AddToGlobalDict() is a wrapper around PyDict_SetDefault() that should be used whenever we need to add a value to a runtime-global dict object (in the few cases where we are leaving the container global rather than moving it to PyInterpreterState, e.g. the interned strings dict). _Py_AddToGlobalDict() does all the necessary work to make sure the target global dict is shared safely between isolated interpreters. This is especially important as we move the obmalloc state to each interpreter (gh-101660), as well as, potentially, the GIL (PEP 684).
https://github.com/python/cpython/issues/100227
Moving it valuable with a per-interpreter GIL. However, it is also useful without one, since it allows us to identify refleaks within a single interpreter or where references are escaping an interpreter. This becomes more important as we move the obmalloc state to PyInterpreterState.
https://github.com/python/cpython/issues/102304
The essentially eliminates the global variable, with the associated benefits. This is also a precursor to isolating this bit of state to PyInterpreterState.
Folks that currently read _Py_RefTotal directly would have to start using _Py_GetGlobalRefTotal() instead.
https://github.com/python/cpython/issues/102304
It doesn't make sense to use multi-phase init for these modules. Using a per-interpreter "m_copy" (instead of PyModuleDef.m_base.m_copy) makes this work okay. (This came up while working on gh-101660.)
Note that we might instead end up disallowing re-load for sys/builtins since they are so special.
https://github.com/python/cpython/issues/102660
This change is almost entirely moving code around and hiding import state behind internal API. We introduce no changes to behavior, nor to non-internal API. (Since there was already going to be a lot of churn, I took this as an opportunity to re-organize import.c into topically-grouped sections of code.) The motivation is to simplify a number of upcoming changes.
Specific changes:
* move existing import-related code to import.c, wherever possible
* add internal API for interacting with import state (both global and per-interpreter)
* use only API outside of import.c (to limit churn there when changing the location, etc.)
* consolidate the import-related state of PyInterpreterState into a single struct field (this changes layout slightly)
* add macros for import state in import.c (to simplify changing the location)
* group code in import.c into sections
*remove _PyState_AddModule()
https://github.com/python/cpython/issues/101758
* Make sure that the current exception is always normalized.
* Remove redundant type and traceback fields for the current exception.
* Add new API functions: PyErr_GetRaisedException, PyErr_SetRaisedException
* Add new API functions: PyException_GetArgs, PyException_SetArgs
The GILState API (PEP 311) implementation from 2003 made the assumption that only one thread state would ever be used for any given OS thread, explicitly disregarding the case of subinterpreters. However, PyThreadState_Swap() still facilitated switching between subinterpreters, meaning the "current" thread state (holding the GIL), and the GILState thread state could end up out of sync, causing problems (including crashes).
This change addresses the issue by keeping the two in sync in PyThreadState_Swap(). I verified the fix against gh-99040.
Note that the other GILState-subinterpreter incompatibility (with autoInterpreterState) is not resolved here.
https://github.com/python/cpython/issues/59956
A PyThreadState can be in one of many states in its lifecycle, represented by some status value. Those statuses haven't been particularly clear, so we're addressing that here. Specifically:
* made the distinct lifecycle statuses clear on PyThreadState
* identified expectations of how various lifecycle-related functions relate to status
* noted the various places where those expectations don't match the actual behavior
At some point we'll need to address the mismatches.
(This change also includes some cleanup.)
https://github.com/python/cpython/issues/59956
We've factored out a struct from the two PyThreadState fields. This accomplishes two things:
* make it clear that the trashcan-related code doesn't need any other parts of PyThreadState
* allows us to use the trashcan mechanism even when there isn't a "current" thread state
We still expect the caller to hold the GIL.
https://github.com/python/cpython/issues/59956
This is a follow-up to gh-101161. The objective is to make it easier to read Python/pystate.c by grouping the functions there in a consistent way. This exclusively involves moving code around and adding various kinds of comments.
https://github.com/python/cpython/issues/59956
The objective of this change is to help make the GILState-related code easier to understand. This mostly involves moving code around and some semantically equivalent refactors. However, there are a also a small number of slight changes in structure and behavior:
* tstate_current is moved out of _PyRuntimeState.gilstate
* autoTSSkey is moved out of _PyRuntimeState.gilstate
* autoTSSkey is initialized earlier
* autoTSSkey is re-initialized (after fork) earlier
https://github.com/python/cpython/issues/59956
* Add API to allow extensions to set callback function on creation and destruction of PyCodeObject
Co-authored-by: Ye11ow-Flash <janshah@cs.stonybrook.edu>
The global allocators were stored in 3 static global variables: _PyMem_Raw, _PyMem, and _PyObject. State for the "small block" allocator was stored in another 13. That makes a total of 16 global variables. We are moving all 16 to the _PyRuntimeState struct as part of the work for gh-81057. (If PEP 684 is accepted then we will follow up by moving them all to PyInterpreterState.)
https://github.com/python/cpython/issues/81057
* Adds EXIT_INTERPRETER instruction to exit PyEval_EvalDefault()
* Simplifies RETURN_VALUE, YIELD_VALUE and RETURN_GENERATOR instructions as they no longer need to check for entry frames.
(see https://github.com/python/cpython/issues/98608)
This change does the following:
1. change the argument to a new `_PyInterpreterConfig` struct
2. rename the function to `_Py_NewInterpreterFromConfig()`, inspired by `Py_InitializeFromConfig()` (takes a `_PyInterpreterConfig` instead of `isolated_subinterpreter`)
3. split up the boolean `isolated_subinterpreter` into the corresponding multiple granular settings
* allow_fork
* allow_subprocess
* allow_threads
4. add `PyInterpreterState.feature_flags` to store those settings
5. add a function for checking if a feature is enabled on an opaque `PyInterpreterState *`
6. drop `PyConfig._isolated_interpreter`
The existing default (see `Py_NewInterpeter()` and `Py_Initialize*()`) allows fork, subprocess, and threads and the optional "isolated" interpreter (see the `_xxsubinterpreters` module) disables all three. None of that changes here; the defaults are preserved.
Note that the given `_PyInterpreterConfig` will not be used outside `_Py_NewInterpreterFromConfig()`, nor preserved. This contrasts with how `PyConfig` is currently preserved, used, and even modified outside `Py_InitializeFromConfig()`. I'd rather just avoid that mess from the start for `_PyInterpreterConfig`. We can preserve it later if we find an actual need.
This change allows us to follow up with a number of improvements (e.g. stop disallowing subprocess and support disallowing exec instead).
(Note that this PR adds "private" symbols. We'll probably make them public, and add docs, in a separate change.)
This was added for bpo-40514 (gh-84694) to test out a per-interpreter GIL. However, it has since proven unnecessary to keep the experiment in the repo. (It can be done as a branch in a fork like normal.) So here we are removing:
* the configure option
* the macro
* the code enabled by the macro
Previously, the main interpreter was allocated on the heap during runtime initialization. Here we instead embed it into _PyRuntimeState, which means it is statically allocated as part of the _PyRuntime global. The same goes for the initial thread state (of each interpreter, including the main one). Consequently there are fewer allocations during runtime/interpreter init, fewer possible failures, and better memory locality.
FYI, this also helps efforts to consolidate globals, which in turns helps work on subinterpreter isolation.
https://bugs.python.org/issue45953
* Do not PUSH/POP traceback or type to the stack as part of exc_info
* Remove exc_traceback and exc_type from _PyErr_StackItem
* Add to what's new, because this change breaks things like Cython
Previously, basic initialization of PyInterprterState happened in PyInterpreterState_New() (along with allocation and adding the new interpreter to the runtime state). This prevented us from initializing interpreter states that were allocated separately (e.g. statically or in a free list). We've addressed that here by factoring out a separate function just for initialization. We've done the same for PyThreadState. _PyRuntimeState was sorted out when we added it since _PyRuntime is statically allocated. However, here we update the existing init code to line up with the functions for PyInterpreterState and PyThreadState.
https://bugs.python.org/issue46008
PyInterpreterState_Main() is a plain function exposed in the public C-API. For internal usage we can take the more efficient approach in this PR.
https://bugs.python.org/issue46008
This simplifies new_threadstate(). We also rename _PyThreadState_Init() to _PyThreadState_SetCurrent() to reflect what it actually does.
https://bugs.python.org/issue46008
Doing so allows us to stop assigning various fields to `NULL` and 0. It also more closely matches the behavior of a static initializer.
Automerge-Triggered-By: GH:ericsnowcurrently
This parallels _PyRuntimeState.interpreters. Doing this helps make it more clear what part of PyInterpreterState relates to its threads.
https://bugs.python.org/issue46008
This falls into the category of keep-allocation-and-initialization separate. It also allows us to use _PyEval_InitState() safely in functions that return void.
https://bugs.python.org/issue46008
* Make internal APIs that take PyFrameConstructor take a PyFunctionObject instead.
* Add reference to function to frame, borrow references to builtins and globals.
* Add COPY_FREE_VARS instruction to allow specialization of calls to inner functions.
Unlike the other locks reinitialized by _PyRuntimeState_ReInitThreads,
the "interpreters.main->id_mutex" is not freed by _PyRuntimeState_Fini
and should not force the default raw allocator.
Add PyThreadState_EnterTracing() and PyThreadState_LeaveTracing()
functions to the limited C API to suspend and resume tracing and
profiling.
Add an unit test on the PyThreadState C API to _testcapi.
Add also internal _PyThreadState_DisableTracing() and
_PyThreadState_ResetTracing().
Redefining the PyThreadState_GET() macro in pycore_pystate.h is
useless since it doesn't affect files not including it. Either use
_PyThreadState_GET() directly, or don't use pycore_pystate.h internal
C API. For example, the _testcapi extension don't use the internal C
API, but use the public PyThreadState_Get() function instead.
Replace PyThreadState_Get() with _PyThreadState_GET(). The
_PyThreadState_GET() macro is more efficient than PyThreadState_Get()
and PyThreadState_GET() function calls which call fail with a fatal
Python error.
posixmodule.c and _ctypes extension now include <windows.h> before
pycore header files (like pycore_call.h).
_PyTraceback_Add() now uses _PyErr_Fetch()/_PyErr_Restore() instead
of PyErr_Fetch()/PyErr_Restore().
The _decimal and _xxsubinterpreters extensions are now built with the
Py_BUILD_CORE_MODULE macro defined to get access to the internal C
API.
Places the locals between the specials and stack. This is the more "natural" layout for a C struct, makes the code simpler and gives a slight speedup (~1%)
* Convert "specials" array to InterpreterFrame struct, adding f_lasti, f_state and other non-debug FrameObject fields to it.
* Refactor, calls pushing the call to the interpreter upward toward _PyEval_Vector.
* Compute f_back when on thread stack, only filling in value when frame object outlives stack invocation.
* Move ownership of InterpreterFrame in generator from frame object to generator object.
* Do not create frame objects for Python calls.
* Do not create frame objects for generators.
* Remove 'zombie' frames. We won't need them once we are allocating fixed-size frames.
* Add co_nlocalplus field to code object to avoid recomputing size of locals + frees + cells.
* Move locals, cells and freevars out of frame object into separate memory buffer.
* Use per-threadstate allocated memory chunks for local variables.
* Move globals and builtins from frame object to per-thread stack.
* Move (slow) locals frame object to per-thread stack.
* Move internal frame functions to internal header.
* Add Py_TPFLAGS_SEQUENCE and Py_TPFLAGS_MAPPING, add to all relevant standard builtin classes.
* Set relevant flags on collections.abc.Sequence and Mapping.
* Use flags in MATCH_SEQUENCE and MATCH_MAPPING opcodes.
* Inherit Py_TPFLAGS_SEQUENCE and Py_TPFLAGS_MAPPING.
* Add NEWS
* Remove interpreter-state map_abc and seq_abc fields.
* Remove redundant tracing_possible field from interpreter state.
* Move 'use_tracing' from tstate onto C stack, for fastest possible checking in dispatch logic.
* Add comments stressing the importance stack discipline when dealing with CFrames.
* Add NEWS
At Python startup, call _PyGILState_Init() before
PyInterpreterState_New() which calls _PyThreadState_GET(). When
Python is built using --with-experimental-isolated-subinterpreters,
_PyThreadState_GET() uses autoTSSkey.
Pass the current interpreter (interp) rather than the current Python
thread state (tstate) to internal functions which only use the
interpreter.
Modified functions:
* _PyXXX_Fini() and _PyXXX_ClearFreeList() functions
* _PyEval_SignalAsyncExc(), make_pending_calls()
* _PySys_GetObject(), sys_set_object(), sys_set_object_id(), sys_set_object_str()
* should_audit(), set_flags_from_config(), make_flags()
* _PyAtExit_Call()
* init_stdio_encoding()
* etc.
Fix the _PyUnicode_FromId() function (_Py_IDENTIFIER(var) API) when
Py_Initialize() / Py_Finalize() is called multiple times:
preserve _PyRuntime.unicode_ids.next_index value.
Use _PyRuntimeState_INIT macro instead memset(0) to reset
_PyRuntimeState members to zero.
Make the type attribute lookup cache per-interpreter.
Add private _PyType_InitCache() function, called by PyInterpreterState_New().
Continue to share next_version_tag between interpreters, since static
types are still shared by interpreters.
Remove MCACHE macro: the cache is no longer disabled if the
EXPERIMENTAL_ISOLATED_SUBINTERPRETERS macro is defined.
Make _PyUnicode_FromId() function compatible with subinterpreters.
Each interpreter now has an array of identifier objects (interned
strings decoded from UTF-8).
* Add PyInterpreterState.unicode.identifiers: array of identifiers
objects.
* Add _PyRuntimeState.unicode_ids used to allocate unique indexes
to _Py_Identifier.
* Rewrite the _Py_Identifier structure.
Microbenchmark on _PyUnicode_FromId(&PyId_a) with _Py_IDENTIFIER(a):
[ref] 2.42 ns +- 0.00 ns -> [atomic] 3.39 ns +- 0.00 ns: 1.40x slower
This change adds 1 ns per _PyUnicode_FromId() call in average.
* Add _PyAtExit_Call() function and remove pyexitfunc and
pyexitmodule members of PyInterpreterState. The function
logs atexit callback errors using _PyErr_WriteUnraisableMsg().
* Add _PyAtExit_Init() and _PyAtExit_Fini() functions.
* Remove traverse, clear and free functions of the atexit module.
Co-authored-by: Dong-hee Na <donghee.na@python.org>
* Inline _PyInterpreterState_SetConfig(): replace it with
_PyConfig_Copy().
* Add _PyErr_SetFromPyStatus()
* Add _PyInterpreterState_GetConfigCopy()
* Add a new _PyInterpreterState_SetConfig() function.
* Add an unit which gets, modifies, and sets the config.
Call _PyAST_Fini() on all interpreters, not only on the main
interpreter. Also, call it ealier to fix a reference leak.
Python types contain a reference to themselves in in their
PyTypeObject.tp_mro member. _PyAST_Fini() must called before the last
GC collection to destroy AST types.
_PyInterpreterState_Clear() now calls _PyAST_Fini(). It now also
calls _PyWarnings_Fini() on subinterpeters, not only on the main
interpreter.
Add an assertion in AST init_types() to ensure that the _ast module
is no longer used after _PyAST_Fini() has been called.
This adds a new function named sys._current_exceptions() which is equivalent ot
sys._current_frames() except that it returns the exceptions currently handled
by other threads. It is equivalent to calling sys.exc_info() for each running
thread.
The last GC collection is now done before clearing builtins and sys
dictionaries. Add also assertions to ensure that gc.collect() is no
longer called after _PyGC_Fini().
Pass also the tstate to PyInterpreterState_Clear() to pass the
correct tstate to _PyGC_CollectNoFail() and _PyGC_Fini().
PyOS_AfterFork_Child() helper functions now return a PyStatus:
PyOS_AfterFork_Child() is now responsible to handle errors.
* Move _PySignal_AfterFork() to the internal C API
* Add #ifdef HAVE_FORK on _PyGILState_Reinit(), _PySignal_AfterFork()
and _PyInterpreterState_DeleteExceptMain().
In the experimental isolated subinterpreters build mode,
_PyThreadState_GET() gets the autoTSSkey variable and
_PyThreadState_Swap() sets the autoTSSkey variable.
* Add _PyThreadState_GetTSS()
* _PyRuntimeState_GetThreadState() and _PyThreadState_GET()
return _PyThreadState_GetTSS()
* PyEval_SaveThread() sets the autoTSSkey variable to current Python
thread state rather than NULL.
* eval_frame_handle_pending() doesn't check that
_PyThreadState_Swap() result is NULL.
* _PyThreadState_Swap() gets the current Python thread state with
_PyThreadState_GetTSS() rather than
_PyRuntimeGILState_GetThreadState().
* PyGILState_Ensure() no longer checks _PyEval_ThreadsInitialized()
since it cannot access the current interpreter.
* Replace PY_INT64_T with int64_t
* Replace PY_UINT32_T with uint32_t
* Replace PY_UINT64_T with uint64_t
sha3module.c no longer checks if PY_UINT64_T is defined since it's
always defined and uint64_t is always available on platforms
supported by Python.
Rename _PyInterpreterState_GET_UNSAFE() to _PyInterpreterState_GET()
for consistency with _PyThreadState_GET() and to have a shorter name
(help to fit into 80 columns).
Add also "assert(tstate != NULL);" to the function.
Don't access PyInterpreterState.config member directly anymore, but
use new functions:
* _PyInterpreterState_GetConfig()
* _PyInterpreterState_SetConfig()
* _Py_GetConfig()
PyInterpreterState_New() is now responsible to create pending calls,
PyInterpreterState_Delete() now deletes pending calls.
* Rename _PyEval_InitThreads() to _PyEval_InitGIL() and rename
_PyEval_InitGIL() to _PyEval_FiniGIL().
* _PyEval_InitState() and PyEval_FiniState() now create and delete
pending calls. _PyEval_InitState() now returns -1 on memory
allocation failure.
* Add init_interp_create_gil() helper function: code shared by
Py_NewInterpreter() and Py_InitializeFromConfig().
* init_interp_create_gil() now also calls _PyEval_FiniGIL(),
_PyEval_InitGIL() and _PyGILState_Init() in subinterpreters, but
these functions now do nothing when called from a subinterpreter.
PyThreadState.frame is a borrowed reference, not a strong reference:
PyThreadState_Clear() must not call Py_CLEAR(tstate->frame).
Remove test_threading.test_warnings_at_exit(): we cannot warranty
that the Python thread state of daemon threads is cleared in a
reliable way during Python shutdown.
Remove _PyRuntime.getframe hook and remove _PyThreadState_GetFrame
macro which was an alias to _PyRuntime.getframe. They were only
exposed by the internal C API. Remove also PyThreadFrameGetter type.
COMPUTE_EVAL_BREAKER() now also checks if the Python thread state
belongs to the main interpreter. Don't break the evaluation loop if
there are pending signals but the Python thread state it belongs to a
subinterpeter.
* Add _Py_IsMainThread() function.
* Add _Py_ThreadCanHandleSignals() function.
* _PyThreadState_DeleteCurrent() now takes tstate rather than
runtime.
* Add ensure_tstate_not_null() helper to pystate.c.
* Add _PyEval_ReleaseLock() function.
* _PyThreadState_DeleteCurrent() now calls
_PyEval_ReleaseLock(tstate) and frees PyThreadState memory after
this call, not before.
* PyGILState_Release(): rename "tcur" variable to "tstate".
* Rename _PyInterpreterState_Get() to PyInterpreterState_Get() and
move it the limited C API.
* Add _PyInterpreterState_Get() alias to PyInterpreterState_Get() for
backward compatibility with Python 3.8.
PyInterpreterState.eval_frame function now requires a tstate (Python
thread state) parameter.
Add private functions to the C API to get and set the frame
evaluation function:
* Add tstate parameter to _PyFrameEvalFunction function type.
* Add _PyInterpreterState_GetEvalFrameFunc() and
_PyInterpreterState_SetEvalFrameFunc() functions.
* Add tstate parameter to _PyEval_EvalFrameDefault().
PyGILState_Ensure() doesn't call PyEval_InitThreads() anymore when a
new Python thread state is created. The GIL is created by
Py_Initialize() since Python 3.7, it's not needed to call
PyEval_InitThreads() explicitly.
Add an assertion to ensure that the GIL is already created.
Clear the frames of daemon threads earlier during the Python shutdown to
call objects destructors. So "unclosed file" resource warnings are now
emitted for daemon threads in a more reliable way.
Cleanup _PyThreadState_DeleteExcept() code: rename "garbage" to
"list".
The Py_FatalError() function is replaced with a macro which logs
automatically the name of the current function, unless the
Py_LIMITED_API macro is defined.
Changes:
* Add _Py_FatalErrorFunc() function.
* Remove the function name from the message of Py_FatalError() calls
which included the function name.
* Update tests.
Convert _PyRuntimeState.finalizing field to an atomic variable:
* Rename it to _finalizing
* Change its type to _Py_atomic_address
* Add _PyRuntimeState_GetFinalizing() and _PyRuntimeState_SetFinalizing()
functions
* Remove _Py_CURRENTLY_FINALIZING() function: replace it with testing
directly _PyRuntimeState_GetFinalizing() value
Convert _PyRuntimeState_GetThreadState() to static inline function.
PyThreadState.on_delete is a callback used to notify Python when a
thread completes. _thread._set_sentinel() function creates a lock
which is released when the thread completes. It sets on_delete
callback to the internal release_sentinel() function. This lock is
known as Threading._tstate_lock in the threading module.
The release_sentinel() function uses the Python C API. The problem is
that on_delete is called late in the Python finalization, when the C
API is no longer fully working.
The PyThreadState_Clear() function now calls the
PyThreadState.on_delete callback. Previously, that happened in
PyThreadState_Delete().
The release_sentinel() function is now called when the C API is still
fully working.
If _PyImport_FixupExtensionObject() is called from a subinterpreter,
leave extensions unchanged and don't copy the module dictionary
into def->m_base.m_copy.
Clear the current thread later in the Python finalization.
* The PyInterpreterState_Delete() function is now responsible
to call PyThreadState_Swap(NULL).
* The tstate_delete_common() function is now responsible to clear the
"autoTSSKey" thread local storage and it only clears it once the
thread state is fully cleared. It allows to still get the current
thread from TSS in tstate_delete_common().
* Factorize code in common between Py_FinalizeEx() and
Py_EndInterpreter().
* Py_EndInterpreter() now also calls _PyWarnings_Fini().
* Call _PyExc_Fini() and _PyGC_Fini() later in the finalization.
Add PyInterpreterState.runtime field: reference to the _PyRuntime
global variable. This field exists to not have to pass runtime in
addition to tstate to a function. Get runtime from tstate:
tstate->interp->runtime.
Remove "_PyRuntimeState *runtime" parameter from functions already
taking a "PyThreadState *tstate" parameter.
_PyGC_Init() first parameter becomes "PyThreadState *tstate".
For now, we'll rely on the fact that the config structures aren't covered by the stable ABI.
We may revisit this in the future if we further explore the idea of offering a stable embedding API.
(cherry picked from commit bdace21b76)
Add a new struct_size field to PyPreConfig and PyConfig structures to
allow to modify these structures in the future without breaking the
backward compatibility.
* Replace private _config_version field with public struct_size field
in PyPreConfig and PyConfig.
* Public PyPreConfig_InitIsolatedConfig() and
PyPreConfig_InitPythonConfig()
return type becomes PyStatus, instead of void.
* Internal _PyConfig_InitCompatConfig(),
_PyPreConfig_InitCompatConfig(), _PyPreConfig_InitFromConfig(),
_PyPreConfig_InitFromPreConfig() return type becomes PyStatus,
instead of void.
* Remove _Py_CONFIG_VERSION
* Update the Initialization Configuration documentation.
The >=, checking whether a module index was in already in the module-by-index list, needed to be strict.
Also, fold nested ifs into one and fix some bad spacing.
* Rename PyThreadState_DeleteCurrent()
to _PyThreadState_DeleteCurrent()
* Move it to the internal C API
Co-Authored-By: Carol Willing <carolcode@willingconsulting.com>
Remove sys.getcheckinterval() and sys.setcheckinterval() functions.
They were deprecated since Python 3.2. Use sys.getswitchinterval()
and sys.setswitchinterval() instead.
Remove also check_interval field of the PyInterpreterState structure.
* Add 'tstate' parameter to many internal import.c functions.
* _PyImportZip_Init() now gets 'tstate' parameter rather than
'interp'.
* Add 'interp' parameter to _PyState_ClearModules() and rename it
to _PyInterpreterState_ClearModules().
* Move private _PyImport_FindBuiltin() to the internal C API; add
'tstate' parameter to it.
* Remove private _PyImport_AddModuleObject() from the C API:
use public PyImport_AddModuleObject() instead.
* Remove private _PyImport_FindExtensionObjectEx() from the C API:
use private _PyImport_FindExtensionObject() instead.
It has been documented as deprecated and to be removed in 3.8;
From a comment on another thread – which I can't find ; leave get_coro_wrapper() for now, but always return `None`.
https://bugs.python.org/issue36933
* _PyPreConfig_GetGlobalConfig() and _PyCoreConfig_GetGlobalConfig()
now do nothing if the configuration was not initialized with
_PyPreConfig_InitCompatConfig() and _PyCoreConfig_InitCompatConfig()
* Remove utf8_mode=-2 special case: use utf8_mode=-1 instead.
* Fix _PyPreConfig_InitPythonConfig():
* isolated = 0 instead of -1
* use_environment = 1 instead of -1
* Rename _PyConfig_INIT to _PyConfig_INIT_COMPAT
* Rename _PyPreConfig_Init() to _PyPreConfig_InitCompatConfig()
* Rename _PyCoreConfig_Init() to _PyCoreConfig_InitCompatConfig()
* PyInterpreterState_New() now uses _PyCoreConfig_InitPythonConfig()
as default configuration, but it's very quickly overriden anyway.
* _freeze_importlib.c uses _PyCoreConfig_SetString() to set
program_name.
* Cleanup preconfig_init_utf8_mode(): cmdline is always non-NULL.
Add new functions to get the Python interpreter behavior:
* _PyPreConfig_InitPythonConfig()
* _PyCoreConfig_InitPythonConfig()
Add new functions to get an isolated configuration:
* _PyPreConfig_InitIsolatedConfig()
* _PyCoreConfig_InitIsolatedConfig()
Replace _PyPreConfig_INIT and _PyCoreConfig_INIT with new functions
_PyPreConfig_Init() and _PyCoreConfig_Init().
_PyCoreConfig: set configure_c_stdio and parse_argv to 0 by default
to behave as Python 3.6 in the default configuration.
_PyCoreConfig_Read() no longer sets coerce_c_locale_warn to 1 if it's
equal to 0. coerce_c_locale_warn must now be set to -1 (ex: using
_PyCoreConfig_InitPythonConfig()) to enable C locale coercion
warning.
Add unit tests for _PyCoreConfig_InitPythonConfig()
and _PyCoreConfig_InitIsolatedConfig().
Changes:
* Rename _PyCoreConfig_GetCoreConfig() to _PyPreConfig_GetCoreConfig()
* Fix core_read_precmdline(): handle parse_argv=0
* Fix _Py_PreInitializeFromCoreConfig(): pass coreconfig.argv
to _Py_PreInitializeFromPyArgv(), except if parse_argv=0
* Add PyMemAllocatorName enum
* _PyPreConfig.allocator type becomes PyMemAllocatorName, instead of
char*
* Remove _PyPreConfig_Clear()
* Add _PyMem_GetAllocatorName()
* Rename _PyMem_GetAllocatorsName() to
_PyMem_GetCurrentAllocatorName()
* Remove _PyPreConfig_SetAllocator(): just call
_PyMem_SetupAllocators() directly, we don't have do reallocate the
configuration with the new allocator anymore!
* _PyPreConfig_Write() parameter becomes const, as it should be in
the first place!
Add "struct _ceval_runtime_state *ceval = &_PyRuntime.ceval;" local
variables to function to better highlight the dependency on the
global variable _PyRuntime and to point directly to _PyRuntime.ceval
field rather than on the larger _PyRuntime.
Changes:
* Add _PyRuntimeState_GetThreadState(runtime) macro.
* Add _PyEval_AddPendingCall(ceval, ...) and
_PyThreadState_Swap(gilstate, ...) functions.
* _PyThreadState_GET() macro now calls
_PyRuntimeState_GetThreadState() using &_PyRuntime.
* Add 'ceval' parameter to COMPUTE_EVAL_BREAKER(),
SIGNAL_PENDING_SIGNALS(), _PyEval_SignalAsyncExc(),
_PyEval_SignalReceived() and _PyEval_FiniThreads() macros and
functions.
* Add 'tstate' parameter to call_function(), do_call_core() and
do_raise().
* Add 'runtime' parameter to _Py_CURRENTLY_FINALIZING(),
_Py_FinishPendingCalls() and _PyThreadState_DeleteExcept()
macros and functions.
* Declare 'runtime', 'tstate', 'ceval' and 'eval_breaker' variables
as constant.
Py_InitializeEx() now uses a runtime variable passed to subfunctions,
rather than working directly on the global variable _PyRuntime.
Add 'runtime' parameter to _PyCoreConfig_Write(), _PySys_Create(),
_PySys_InitMain(), _PyGILState_Init(),
emit_stderr_warning_for_legacy_locale() and other subfunctions.
* Add a 'runtime' variable to Py_FinalizeEx() rather than working
directly on the global variable _PyRuntime
* Add a 'runtime' parameter to _PyGC_Fini(), _PyGILState_Fini()
and call_ll_exitfuncs()
The PyOS_AfterFork_Child() function now pass a 'runtime' parameter to
subfunctions.
* Fix _PyRuntimeState_ReInitThreads(): use the correct memory allocator
* Add runtime parameter to _PyRuntimeState_ReInitThreads(),
_PyGILState_Reinit() and _PyInterpreterState_DeleteExceptMain()
* Move _PyGILState_Reinit() to the internal C API.
* Add 'runtime' parameter to _PyThreadState_Init()
* Add 'gilstate' parameter to _PyGILState_NoteThreadState()
* Move _PyThreadState_Init() and _PyThreadState_DeleteExcept()
to the internal C API.
This is effectively an un-revert of #11617 and #12024 (reverted in #12159). Portions of those were merged in other PRs (with lower risk) and this represents the remainder. Note that I found 3 different bugs in the original PRs and have fixed them here.
* Revert "bpo-36097: Use only public C-API in the_xxsubinterpreters module (adding as necessary). (#12003)"
This reverts commit bcfa450f21.
* Revert "bpo-33608: Simplify ceval's DISPATCH by hoisting eval_breaker ahead of time. (gh-12062)"
This reverts commit bda918bf65.
* Revert "bpo-33608: Use _Py_AddPendingCall() in _PyCrossInterpreterData_Release(). (gh-12024)"
This reverts commit b05b711a2c.
* Revert "bpo-33608: Factor out a private, per-interpreter _Py_AddPendingCall(). (GH-11617)"
This reverts commit ef4ac967e2.
The whole coreconfig.h header is now excluded from Py_LIMITED_API.
Move functions definitions into a new internal pycore_coreconfig.h
header.
* Move Include/coreconfig.h to Include/cpython/coreconfig.h
* coreconfig.h header is now excluded from Py_LIMITED_API
* Move functions to pycore_coreconfig.h
If Py_BUILD_CORE is defined, the PyThreadState_GET() macro access
_PyRuntime which comes from the internal pycore_state.h header.
Public headers must not require internal headers.
Move PyThreadState_GET() and _PyInterpreterState_GET_UNSAFE() from
Include/pystate.h to Include/internal/pycore_state.h, and rename
PyThreadState_GET() to _PyThreadState_GET() there.
The PyThreadState_GET() macro of pystate.h is now redefined when
pycore_state.h is included, to use the fast _PyThreadState_GET().
Changes:
* Add _PyThreadState_GET() macro
* Replace "PyThreadState_GET()->interp" with
_PyInterpreterState_GET_UNSAFE()
* Replace PyThreadState_GET() with _PyThreadState_GET() in internal C
files (compiled with Py_BUILD_CORE defined), but keep
PyThreadState_GET() in the public header files.
* _testcapimodule.c: replace PyThreadState_GET() with
PyThreadState_Get(); the module is not compiled with Py_BUILD_CORE
defined.
* pycore_state.h now requires Py_BUILD_CORE to be defined.
* Remove _PyThreadState_Current
* Replace GET_TSTATE() with PyThreadState_GET()
* Replace GET_INTERP_STATE() with _PyInterpreterState_GET_UNSAFE()
* Replace direct access to _PyThreadState_Current with
PyThreadState_GET()
* Replace _PyThreadState_Current with
_PyRuntime.gilstate.tstate_current
* Rename SET_TSTATE() to _PyThreadState_SET(), name more
consistent with _PyThreadState_GET()
* Update outdated comments
When os.fork() is called (on platforms that support it) all threads but the current one are destroyed in the child process. Consequently we must ensure that all but the associated interpreter are likewise destroyed. The main interpreter is critical for runtime operation, so we must ensure that fork only happens in the main interpreter.
https://bugs.python.org/issue34651
* A pointer in `PyInterpreterState_New()` could have been `NULL` when being dereferenced.
* Memory was leaked in `PyInterpreterState_New()` when taking some error-handling code path.