Multiple places in the I/O stack optimize common cases by using the
information from stat. Currently individual members are extracted from
the stat and stored into the fileio struct. Refactor the code to store
the whole stat struct instead.
Parallels the changes to _io. The `stat` Python object doesn't allow
changing members, so rather than modifying estimated_size, just clear
the value.
Sometimes a large file is truncated (test_largefile). While
estimated_size is used as a estimate (the read will stil get the number
of bytes in the file), that it is much larger than the actual size of
data can result in a significant over allocation and sometimes lead to
a MemoryError / running out of memory.
This brings the C implementation to match the Python _pyio
implementation.
This reduces the system call count of a simple program[0] that reads all
the `.rst` files in Doc by over 10% (5706 -> 4734 system calls on my
linux system, 5813 -> 4875 on my macOS)
This reduces the number of `fstat()` calls always and seek calls most
the time. Stat was always called twice, once at open (to error early on
directories), and a second time to get the size of the file to be able
to read the whole file in one read. Now the size is cached with the
first call.
The code keeps an optimization that if the user had previously read a
lot of data, the current position is subtracted from the number of bytes
to read. That is somewhat expensive so only do it on larger files,
otherwise just try and read the extra bytes and resize the PyBytes as
needeed.
I built a little test program to validate the behavior + assumptions
around relative costs and then ran it under `strace` to get a log of the
system calls. Full samples below[1].
After the changes, this is everything in one `filename.read_text()`:
```python3
openat(AT_FDCWD, "cpython/Doc/howto/clinic.rst", O_RDONLY|O_CLOEXEC) = 3`
fstat(3, {st_mode=S_IFREG|0644, st_size=343, ...}) = 0`
ioctl(3, TCGETS, 0x7ffdfac04b40) = -1 ENOTTY (Inappropriate ioctl for device)
lseek(3, 0, SEEK_CUR) = 0
read(3, ":orphan:\n\n.. This page is retain"..., 344) = 343
read(3, "", 1) = 0
close(3) = 0
```
This does make some tradeoffs
1. If the file size changes between open() and readall(), this will
still get all the data but might have more read calls.
2. I experimented with avoiding the stat + cached result for small files
in general, but on my dev workstation at least that tended to reduce
performance compared to using the fstat().
[0]
```python3
from pathlib import Path
nlines = []
for filename in Path("cpython/Doc").glob("**/*.rst"):
nlines.append(len(filename.read_text()))
```
[1]
Before small file:
```
openat(AT_FDCWD, "cpython/Doc/howto/clinic.rst", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=343, ...}) = 0
ioctl(3, TCGETS, 0x7ffe52525930) = -1 ENOTTY (Inappropriate ioctl for device)
lseek(3, 0, SEEK_CUR) = 0
lseek(3, 0, SEEK_CUR) = 0
fstat(3, {st_mode=S_IFREG|0644, st_size=343, ...}) = 0
read(3, ":orphan:\n\n.. This page is retain"..., 344) = 343
read(3, "", 1) = 0
close(3) = 0
```
After small file:
```
openat(AT_FDCWD, "cpython/Doc/howto/clinic.rst", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=343, ...}) = 0
ioctl(3, TCGETS, 0x7ffdfac04b40) = -1 ENOTTY (Inappropriate ioctl for device)
lseek(3, 0, SEEK_CUR) = 0
read(3, ":orphan:\n\n.. This page is retain"..., 344) = 343
read(3, "", 1) = 0
close(3) = 0
```
Before large file:
```
openat(AT_FDCWD, "cpython/Doc/c-api/typeobj.rst", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=133104, ...}) = 0
ioctl(3, TCGETS, 0x7ffe52525930) = -1 ENOTTY (Inappropriate ioctl for device)
lseek(3, 0, SEEK_CUR) = 0
lseek(3, 0, SEEK_CUR) = 0
fstat(3, {st_mode=S_IFREG|0644, st_size=133104, ...}) = 0
read(3, ".. highlight:: c\n\n.. _type-struc"..., 133105) = 133104
read(3, "", 1) = 0
close(3) = 0
```
After large file:
```
openat(AT_FDCWD, "cpython/Doc/c-api/typeobj.rst", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=133104, ...}) = 0
ioctl(3, TCGETS, 0x7ffdfac04b40) = -1 ENOTTY (Inappropriate ioctl for device)
lseek(3, 0, SEEK_CUR) = 0
lseek(3, 0, SEEK_CUR) = 0
read(3, ".. highlight:: c\n\n.. _type-struc"..., 133105) = 133104
read(3, "", 1) = 0
close(3) = 0
```
Co-authored-by: Shantanu <12621235+hauntsaninja@users.noreply.github.com>
Co-authored-by: Erlend E. Aasland <erlend.aasland@protonmail.com>
Co-authored-by: Victor Stinner <vstinner@python.org>
* Remove unused <locale.h> includes.
* Remove unused <fcntl.h> include in traceback.h.
* Remove redundant <assert.h> and <stddef.h> includes. They are already
included by "Python.h".
* Remove <object.h> include in faulthandler.c. Python.h already includes it.
* Add missing <stdbool.h> in pycore_pythread.h if HAVE_PTHREAD_STUBS
is defined.
* Fix also warnings in pthread_stubs.h: don't redefine macros if they
are already defined, like the __NEED_pthread_t macro.
Remove _PyErr_ChainExceptions(), _PyErr_ChainExceptions1() and
_PyErr_SetFromPyStatus() functions from the public C API.
* Move the private _PyErr_ChainExceptions() and
_PyErr_ChainExceptions1() function to the internal C API
(pycore_pyerrors.h).
* Move the private _PyErr_SetFromPyStatus() to the internal C API
(pycore_initconfig.h).
* No longer export the _PyErr_ChainExceptions() function.
* Move run_in_subinterp_with_config() from _testcapi to
_testinternalcapi.
Functions like PyErr_SetFromErrno() and SetFromWindowsErr() should be
called immediately after using the C API which sets errno or the Windows
error code.
Deprecate the old Py_UNICODE and PY_UNICODE_TYPE types in the C API:
use wchar_t instead.
Replace Py_UNICODE with wchar_t in multiple C files.
Co-authored-by: Inada Naoki <songofacandy@gmail.com>
Add `MS_WINDOWS_DESKTOP`, `MS_WINDOWS_APPS`, `MS_WINDOWS_SYSTEM` and `MS_WINDOWS_GAMES` preprocessor definitions to allow switching off functionality missing from particular API partitions ("partitions" are used in Windows to identify overlapping subsets of APIs).
CPython only officially supports `MS_WINDOWS_DESKTOP` and `MS_WINDOWS_SYSTEM` (APPS is included by normal desktop builds, but APPS without DESKTOP is not covered). Other configurations are a convenience for people building their own runtimes.
`MS_WINDOWS_GAMES` is for the Xbox subset of the Windows API, which is also available on client OS, but is restricted compared to `MS_WINDOWS_DESKTOP`. These restrictions may change over time, as they relate to the build headers rather than the OS support, and so we assume that Xbox builds will use the latest available version of the GDK.
builtins and extension module functions and methods that expect boolean values for parameters now accept any Python object rather than just a bool or int type. This is more consistent with how native Python code itself behaves.
We're no longer using _Py_IDENTIFIER() (or _Py_static_string()) in any core CPython code. It is still used in a number of non-builtin stdlib modules.
The replacement is: PyUnicodeObject (not pointer) fields under _PyRuntimeState, statically initialized as part of _PyRuntime. A new _Py_GET_GLOBAL_IDENTIFIER() macro facilitates lookup of the fields (along with _Py_GET_GLOBAL_STRING() for non-identifier strings).
https://bugs.python.org/issue46541#msg411799 explains the rationale for this change.
The core of the change is in:
* (new) Include/internal/pycore_global_strings.h - the declarations for the global strings, along with the macros
* Include/internal/pycore_runtime_init.h - added the static initializers for the global strings
* Include/internal/pycore_global_objects.h - where the struct in pycore_global_strings.h is hooked into _PyRuntimeState
* Tools/scripts/generate_global_objects.py - added generation of the global string declarations and static initializers
I've also added a --check flag to generate_global_objects.py (along with make check-global-objects) to check for unused global strings. That check is added to the PR CI config.
The remainder of this change updates the core code to use _Py_GET_GLOBAL_IDENTIFIER() instead of _Py_IDENTIFIER() and the related _Py*Id functions (likewise for _Py_GET_GLOBAL_STRING() instead of _Py_static_string()). This includes adding a few functions where there wasn't already an alternative to _Py*Id(), replacing the _Py_Identifier * parameter with PyObject *.
The following are not changed (yet):
* stop using _Py_IDENTIFIER() in the stdlib modules
* (maybe) get rid of _Py_IDENTIFIER(), etc. entirely -- this may not be doable as at least one package on PyPI using this (private) API
* (maybe) intern the strings during runtime init
https://bugs.python.org/issue46541
In ArgumentClinic, value "NULL" should now be used only for unrepresentable default values
(like in the optional third parameter of getattr). "None" should be used if None is accepted
as argument and passing None has the same effect as not passing the argument at all.
It is now allowed to add new fields at the end of the PyTypeObject struct without having to allocate a dedicated compatibility flag in tp_flags.
This will reduce the risk of running out of bits in the 32-bit tp_flags value.
METH_NOARGS functions need only a single argument but they are cast
into a PyCFunction, which takes two arguments. This triggers an
invalid function cast warning in gcc8 due to the argument mismatch.
Fix this by adding a dummy unused argument.
In _io_FileIO_readall_impl(), lseek() and _Py_fstat_noraise() were called
without releasing the GIL. This can cause all threads to hang for
unlimited time when calling FileIO.read() and the NFS server is not
accessible.
kB (*kilo* byte) unit means 1000 bytes, whereas KiB ("kibibyte")
means 1024 bytes. KB was misused: replace kB or KB with KiB when
appropriate.
Same change for MB and GB which become MiB and GiB.
Change the output of Tools/iobench/iobench.py.
Round also the size of the documentation from 5.5 MB to 5 MiB.
Based on patch by Victor Stinner.
Add private C API function _PyUnicode_AsUnicode() which is similar to
PyUnicode_AsUnicode(), but checks for null characters.
FileIO.seek() and FileIO.tell() method now set the internal seekable
attribute to avoid one syscall on open() (in buffered or text mode).
The seekable property is now also more reliable since its value is
set correctly on memory allocation failure.