Remove the following functions from the public C API:
* _PyObject_RealIsInstance()
* _PyObject_RealIsSubclass()
* _Py_add_one_to_index_F()
* _Py_add_one_to_index_C()
Move _PyObject_RealIsInstance() and _PyObject_RealIsSubclass() to the
internal C API (pycore_abstract.h) and no longer export their symbols
(in libpython).
Make _Py_add_one_to_index_F() and _Py_add_one_to_index_C() functions
static: no longer export them.
These functions are broken by design because they discard any exceptions raised
inside, including MemoryError and KeyboardInterrupt. They should not be
used in new code.
* Pickle the `name` and `args` attributes of AttributeError when present.
Co-authored-by: Gregory P. Smith <greg@krypto.org>
Co-authored-by: Erlend E. Aasland <erlend.aasland@protonmail.com>
Some incompatible changes had gone in, and the "ignore" lists weren't properly undated. This change fixes that. It's necessary prior to enabling test_check_c_globals, which I hope to do soon.
Note that this does include moving last_resort_memory_error to PyInterpreterState.
https://github.com/python/cpython/issues/90110
* Make sure that the current exception is always normalized.
* Remove redundant type and traceback fields for the current exception.
* Add new API functions: PyErr_GetRaisedException, PyErr_SetRaisedException
* Add new API functions: PyException_GetArgs, PyException_SetArgs
- On WASI `ENOTCAPABLE` is now mapped to `PermissionError`.
- The `errno` modules exposes the new error number.
- `getpath.py` now ignores `PermissionError` when it cannot open landmark
files `pybuilddir.txt` and `pyenv.cfg`.
This is the first of several precursors to storing tp_subclasses (and tp_weaklist) on the interpreter state for static builtin types.
We do the following:
* add `_PyStaticType_InitBuiltin()`
* add `_Py_TPFLAGS_STATIC_BUILTIN`
* set it on all static builtin types in `_PyStaticType_InitBuiltin()`
* shuffle some code around to be able to use _PyStaticType_InitBuiltin()
* rename `_PyStructSequence_InitType()` to `_PyStructSequence_InitBuiltinWithFlags()`
* add `_PyStructSequence_InitBuiltin()`.
Currently, calling Py_EnterRecursiveCall() and
Py_LeaveRecursiveCall() may use a function call or a static inline
function call, depending if the internal pycore_ceval.h header file
is included or not. Use a different name for the static inline
function to ensure that the static inline function is always used in
Python internals for best performance. Similar approach than
PyThreadState_GET() (function call) and _PyThreadState_GET() (static
inline function).
* Rename _Py_EnterRecursiveCall() to _Py_EnterRecursiveCallTstate()
* Rename _Py_LeaveRecursiveCall() to _Py_LeaveRecursiveCallTstate()
* pycore_ceval.h: Rename Py_EnterRecursiveCall() to
_Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() and
_Py_LeaveRecursiveCall()
We're no longer using _Py_IDENTIFIER() (or _Py_static_string()) in any core CPython code. It is still used in a number of non-builtin stdlib modules.
The replacement is: PyUnicodeObject (not pointer) fields under _PyRuntimeState, statically initialized as part of _PyRuntime. A new _Py_GET_GLOBAL_IDENTIFIER() macro facilitates lookup of the fields (along with _Py_GET_GLOBAL_STRING() for non-identifier strings).
https://bugs.python.org/issue46541#msg411799 explains the rationale for this change.
The core of the change is in:
* (new) Include/internal/pycore_global_strings.h - the declarations for the global strings, along with the macros
* Include/internal/pycore_runtime_init.h - added the static initializers for the global strings
* Include/internal/pycore_global_objects.h - where the struct in pycore_global_strings.h is hooked into _PyRuntimeState
* Tools/scripts/generate_global_objects.py - added generation of the global string declarations and static initializers
I've also added a --check flag to generate_global_objects.py (along with make check-global-objects) to check for unused global strings. That check is added to the PR CI config.
The remainder of this change updates the core code to use _Py_GET_GLOBAL_IDENTIFIER() instead of _Py_IDENTIFIER() and the related _Py*Id functions (likewise for _Py_GET_GLOBAL_STRING() instead of _Py_static_string()). This includes adding a few functions where there wasn't already an alternative to _Py*Id(), replacing the _Py_Identifier * parameter with PyObject *.
The following are not changed (yet):
* stop using _Py_IDENTIFIER() in the stdlib modules
* (maybe) get rid of _Py_IDENTIFIER(), etc. entirely -- this may not be doable as at least one package on PyPI using this (private) API
* (maybe) intern the strings during runtime init
https://bugs.python.org/issue46541
Convert the PyType_SUPPORTS_WEAKREFS() macro to a regular function.
It no longer access the PyTypeObject.tp_weaklistoffset member
directly.
Add _PyType_SUPPORTS_WEAKREFS() static inline functions, used
internally by Python for best performance.
Add _PyUnicode_FiniTypes() function, called by
finalize_interp_types(). It clears these static types:
* EncodingMapType
* PyFieldNameIter_Type
* PyFormatterIter_Type
_PyStaticType_Dealloc() now does nothing if tp_subclasses
is not NULL.
Add 'static_exceptions' list to factorize code between
_PyExc_InitTypes() and _PyBuiltins_AddExceptions().
_PyExc_InitTypes() does nothing if it's not the main interpreter.
Sort exceptions in Lib/test/exception_hierarchy.txt.
This change is strictly renames and moving code around. It helps in the following ways:
* ensures type-related init functions focus strictly on one of the three aspects (state, objects, types)
* passes in PyInterpreterState * to all those functions, simplifying work on moving types/objects/state to the interpreter
* consistent naming conventions help make what's going on more clear
* keeping API related to a type in the corresponding header file makes it more obvious where to look for it
https://bugs.python.org/issue46008
The deallocator function of the BaseException type now uses the
trashcan mecanism to prevent stack overflow. For example, when a
RecursionError instance is raised, it can be linked to another
RecursionError through the __context__ attribute or the __traceback__
attribute, and then a chain of exceptions is created. When the chain
is destroyed, nested deallocator function calls can crash with a
stack overflow if the chain is too long compared to the available
stack memory.