In gh-120009 I used an atexit hook to finalize the _datetime module's static types at interpreter shutdown. However, atexit hooks are executed very early in finalization, which is a problem in the few cases where a subclass of one of those static types is still alive until the final GC collection. The static builtin types don't have this probably because they are finalized toward the end, after the final GC collection. To avoid the problem for _datetime, I have applied a similar approach here.
Also, credit goes to @mgorny and @neonene for the new tests.
FYI, I would have liked to take a slightly cleaner approach with managed static types, but wanted to get a smaller fix in first for the sake of backporting. I'll circle back to the cleaner approach with a future change on the main branch.
The _strptime module object was cached in a static local variable (in the datetime.strptime() implementation). That's a problem when it crosses isolation boundaries, such as reinitializing the runtme or between interpreters. This change fixes the problem by dropping the static variable, instead always relying on the normal sys.modules cache (via PyImport_Import()).
This adds a `_PyRecursiveMutex` type based on `PyMutex` and uses that
for the import lock. This fixes some data races in the free-threaded
build and generally simplifies the import lock code.
The `_PyThreadState_Bind()` function is called before the first
`PyEval_AcquireThread()` so it's not synchronized with the stop the
world GC. We had a race where `gc_visit_heaps()` might visit a thread's
heap while it's being initialized.
Use a simple atomic int to avoid visiting heaps for threads that are not
yet fully initialized (i.e., before `tstate_mimalloc_bind()` is called).
The race was reproducible by running:
`python Lib/test/test_importlib/partial/pool_in_threads.py`.
We make use of the same mechanism that we use for the static builtin types. This required a few tweaks.
The relevant code could use some cleanup but I opted to avoid the significant churn in this change. I'll tackle that separately.
This change is the final piece needed to make _datetime support multiple interpreters. I've updated the module slot accordingly.
I was able to make use of the existing datetime_state struct, but there was one tricky thing I had to sort out. We mostly aren't converting to heap types, so we can't use things like PyType_GetModuleByDef() to look up the module state. The solution I came up with is somewhat novel, but I consider it straightforward. Also, it shouldn't have much impact on performance.
In summary, this main changes here are:
* I've added some macros to help hide how various objects relate to module state
* as a solution to the module state lookup problem, I've stored the last loaded module on the current interpreter's internal dict (actually a weakref)
* if the static type method is used after the module has been deleted, it is reloaded
* to avoid extra work when loading the module, we directly copy the objects (new refs only) from the old module state into the new state if the old module hasn't been deleted yet
* during module init we set various objects on the static types' __dict__s; to simplify things, we only do that the first time; once those static types have a separate __dict__ per interpreter, we'll do it every time
* we now clear the module state when the module is destroyed (before, we were leaking everything in _datetime_global_state)
The free-threaded build currently immortalizes objects that use deferred
reference counting (see gh-117783). This typically happens once the
first non-main thread is created, but the behavior can be suppressed for
tests, in subinterpreters, or during a compile() call.
This fixes a race condition involving the tracking of whether the
behavior is suppressed.
Remove the delegation of `int` to the `__trunc__` special method: `int` will now only delegate to `__int__` and `__index__` (in that order). `__trunc__` continues to exist, but its sole purpose is to support `math.trunc`.
---------
Co-authored-by: Bénédikt Tran <10796600+picnixz@users.noreply.github.com>
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
Support non-dict globals in LOAD_FROM_DICT_OR_GLOBALS
The implementation basically copies LOAD_GLOBAL. Possibly it could be deduplicated,
but that seems like it may get hairy since the two operations have different operands.
This is important to fix in 3.14 for PEP 649, but it's a bug in earlier versions too,
and we should backport to 3.13 and 3.12 if possible.
Co-authored-by: Hugo van Kemenade <1324225+hugovk@users.noreply.github.com>
Co-authored-by: Erlend E. Aasland <erlend.aasland@protonmail.com>
Co-authored-by: Victor Stinner <vstinner@python.org>
Structure layout, and especially bitfields, sometimes resulted in clearly
wrong behaviour like overlapping fields. This fixes
Co-authored-by: Gregory P. Smith <gps@python.org>
Co-authored-by: Petr Viktorin <encukou@gmail.com>
`drop_gil()` assumes that its caller is attached, which means that the current
thread holds the GIL if and only if the GIL is enabled, and the enabled-state
of the GIL won't change. This isn't true, though, because `detach_thread()`
calls `_PyEval_ReleaseLock()` after detaching and
`_PyThreadState_DeleteCurrent()` calls it after removing the current thread
from consideration for stop-the-world requests (effectively detaching it).
Fix this by remembering whether or not a thread acquired the GIL when it last
attached, in `PyThreadState._status.holds_gil`, and check this in `drop_gil()`
instead of `gil->enabled`.
This fixes a crash in `test_multiprocessing_pool_circular_import()`, so I've
reenabled it.
Add `Py_BEGIN_CRITICAL_SECTION_SEQUENCE_FAST` and
`Py_END_CRITICAL_SECTION_SEQUENCE_FAST` macros and update `str.join` to use
them. Also add a regression test that would crash reliably without this
patch.
_PyArg_Parser holds static global data generated for modules by Argument Clinic. The _PyArg_Parser.kwtuple field is a tuple object, even though it's stored within a static global. In some cases the tuple is statically allocated and thus it's okay that it gets shared by multiple interpreters. However, in other cases the tuple is set lazily, allocated from the heap using the active interprepreter at the point the tuple is needed.
This is a problem once that interpreter is destroyed since _PyArg_Parser.kwtuple becomes at dangling pointer, leading to crashes. It isn't a problem if the tuple is allocated under the main interpreter, since its lifetime is bound to the lifetime of the runtime. The solution here is to temporarily switch to the main interpreter. The alternative would be to always statically allocate the tuple.
This change also fixes a bug where only the most recent parser was added to the global linked list.
The PEP 649 implementation will require a way to load NotImplementedError
from the bytecode. @markshannon suggested implementing this by converting
LOAD_ASSERTION_ERROR into a more general mechanism for loading constants.
This PR adds this new opcode. I will work on the rest of the implementation
of the PEP separately.
Co-authored-by: Irit Katriel <1055913+iritkatriel@users.noreply.github.com>
`_Py_qsbr_unregister` is called when the PyThreadState is already
detached, so the access to `tstate->qsbr` isn't safe without locking the
shared mutex. Grab the `struct _qsbr_shared` from the interpreter
instead.
_PyWeakref_ClearRef was previously exposed in the public C-API, although
it begins with an underscore and is not documented. It's used by a few
C-API extensions. There is currently no alternative public API that can
replace its use.
_PyWeakref_ClearWeakRefsExceptCallbacks is the only thread-safe way to
use _PyWeakref_ClearRef in the free-threaded build. This exposes the C
symbol, but does not make the API public.
Some embedders and extensions include parts of the internal API. The
pycore_mimalloc.h file is transitively include by a number of other
internal headers. This avoids include errors for code that was
already including those headers.