When monitoring LINE events, instrument all instructions that can have a predecessor on a different line.
Then check that the a new line has been hit in the instrumentation code.
This brings the behavior closer to that of 3.11, simplifying implementation and porting of tools.
Replaces our built-in SHA3 implementation with a verified one from the HACL* project.
This implementation is used when OpenSSL does not provide SHA3 or is not present.
3.11 shiped with a very slow tiny sha3 implementation to get off of the <=3.10 reference implementation that wound up having serious bugs. This brings us back to a reasonably performing built-in implementation consistent with what we've just replaced our other guaranteed available standard hash algorithms with: code from the HACL* project.
---------
Co-authored-by: Gregory P. Smith <greg@krypto.org>
This is strictly about moving the "obmalloc" runtime state from
`_PyRuntimeState` to `PyInterpreterState`. Doing so improves isolation
between interpreters, specifically most of the memory (incl. objects)
allocated for each interpreter's use. This is important for a
per-interpreter GIL, but such isolation is valuable even without it.
FWIW, a per-interpreter obmalloc is the proverbial
canary-in-the-coalmine when it comes to the isolation of objects between
interpreters. Any object that leaks (unintentionally) to another
interpreter is highly likely to cause a crash (on debug builds at
least). That's a useful thing to know, relative to interpreter
isolation.
* The majority of the monitoring code is in instrumentation.c
* The new instrumentation bytecodes are in bytecodes.c
* legacy_tracing.c adapts the new API to the old sys.setrace and sys.setprofile APIs
I've also added a small comment to `Tools/c-analyzer/cpython/_parser.py` to trigger the `patchcheck` CI. It must pass now.
Automerge-Triggered-By: GH:ericsnowcurrently
The essentially eliminates the global variable, with the associated benefits. This is also a precursor to isolating this bit of state to PyInterpreterState.
Folks that currently read _Py_RefTotal directly would have to start using _Py_GetGlobalRefTotal() instead.
https://github.com/python/cpython/issues/102304
This will keep us from adding new unsupported (i.e. non-const) C global variables, which would break interpreter isolation.
FYI, historically it is very uncommon for new global variables to get added. Furthermore, it is rare for new code to break the c-analyzer. So the check should almost always pass unnoticed.
Note that I've removed test_check_c_globals. A test wasn't a great fit conceptually and was super slow on debug builds. A CI check is a better fit.
This also resolves gh-100237.
https://github.com/python/cpython/issues/81057
distutils was removed in November. However, the c-analyzer relies on it. To solve that here, we vendor the parts the tool needs so it can be run against 3.12+. (Also see gh-92584.)
Note that we may end up removing this code later in favor of a solution in common with the peg_generator tool (which also relies on distutils). At the least, the copy here makes sure the c-analyzer tool works on 3.12+ in the meantime.
Some incompatible changes had gone in, and the "ignore" lists weren't properly undated. This change fixes that. It's necessary prior to enabling test_check_c_globals, which I hope to do soon.
Note that this does include moving last_resort_memory_error to PyInterpreterState.
https://github.com/python/cpython/issues/90110
We can't move it to _PyRuntimeState because the symbol is exposed in the stable ABI. We'll have to sort that out before a per-interpreter GIL, but it shouldn't be too hard.
https://github.com/python/cpython/issues/81057
This is part of the effort to consolidate global variables, to make them easier to manage (and make it easier to later move some of them to PyInterpreterState).
https://github.com/python/cpython/issues/81057
We actually don't move PyImport_Inittab. Instead, we make a copy that we keep on _PyRuntimeState and use only that after Py_Initialize(). We also prevent folks from modifying PyImport_Inittab (the best we can) after that point.
https://github.com/python/cpython/issues/81057
The global allocators were stored in 3 static global variables: _PyMem_Raw, _PyMem, and _PyObject. State for the "small block" allocator was stored in another 13. That makes a total of 16 global variables. We are moving all 16 to the _PyRuntimeState struct as part of the work for gh-81057. (If PEP 684 is accepted then we will follow up by moving them all to PyInterpreterState.)
https://github.com/python/cpython/issues/81057
A backslash-character pair that is not a valid escape sequence now
generates a SyntaxWarning, instead of DeprecationWarning. For
example, re.compile("\d+\.\d+") now emits a SyntaxWarning ("\d" is an
invalid escape sequence), use raw strings for regular expression:
re.compile(r"\d+\.\d+"). In a future Python version, SyntaxError will
eventually be raised, instead of SyntaxWarning.
Octal escapes with value larger than 0o377 (ex: "\477"), deprecated
in Python 3.11, now produce a SyntaxWarning, instead of
DeprecationWarning. In a future Python version they will be
eventually a SyntaxError.
codecs.escape_decode() and codecs.unicode_escape_decode() are left
unchanged: they still emit DeprecationWarning.
* The parser only emits SyntaxWarning for Python 3.12 (feature
version), and still emits DeprecationWarning on older Python
versions.
* Fix SyntaxWarning by using raw strings in Tools/c-analyzer/ and
wasm_build.py.
Here we automatically ignore uses of _PyArg_Parser, "kwlist" arrays, and module/type defs. That way new uses don't trigger false positives in the c-analyzer check script.
We broke it with a recent `_PyArg_Parser` change.
Also:
* moved the `_PyArg_Parser` whitelist entries over to ignored.tsv now that they are thread-safe
* added some known globals from a currently-excluded file
* dropped some outdated globals from the whitelist
This change adds variables that had been added since the last time the whitelist was updated. It also cleans up the list a little.
https://bugs.python.org/issue36876
We're no longer using _Py_IDENTIFIER() (or _Py_static_string()) in any core CPython code. It is still used in a number of non-builtin stdlib modules.
The replacement is: PyUnicodeObject (not pointer) fields under _PyRuntimeState, statically initialized as part of _PyRuntime. A new _Py_GET_GLOBAL_IDENTIFIER() macro facilitates lookup of the fields (along with _Py_GET_GLOBAL_STRING() for non-identifier strings).
https://bugs.python.org/issue46541#msg411799 explains the rationale for this change.
The core of the change is in:
* (new) Include/internal/pycore_global_strings.h - the declarations for the global strings, along with the macros
* Include/internal/pycore_runtime_init.h - added the static initializers for the global strings
* Include/internal/pycore_global_objects.h - where the struct in pycore_global_strings.h is hooked into _PyRuntimeState
* Tools/scripts/generate_global_objects.py - added generation of the global string declarations and static initializers
I've also added a --check flag to generate_global_objects.py (along with make check-global-objects) to check for unused global strings. That check is added to the PR CI config.
The remainder of this change updates the core code to use _Py_GET_GLOBAL_IDENTIFIER() instead of _Py_IDENTIFIER() and the related _Py*Id functions (likewise for _Py_GET_GLOBAL_STRING() instead of _Py_static_string()). This includes adding a few functions where there wasn't already an alternative to _Py*Id(), replacing the _Py_Identifier * parameter with PyObject *.
The following are not changed (yet):
* stop using _Py_IDENTIFIER() in the stdlib modules
* (maybe) get rid of _Py_IDENTIFIER(), etc. entirely -- this may not be doable as at least one package on PyPI using this (private) API
* (maybe) intern the strings during runtime init
https://bugs.python.org/issue46541
Like #28744 but for the Tools directory.
[skip issue] Opening a related issue is pending python/psf-infra-meta#130
Automerge-Triggered-By: GH:pablogsal
Use PyLong_FromLong(0) and PyLong_FromLong(1) of the public C API
instead. For Python internals, _PyLong_GetZero() and _PyLong_GetOne()
of pycore_long.h can be used.
The original tool wasn't working right and it was simpler to create a new one, partially re-using some of the old code. At this point the tool runs properly on the master. (Try: ./python Tools/c-analyzer/c-analyzer.py analyze.) It take ~40 seconds on my machine to analyze the full CPython code base.
Note that we'll need to iron out some OS-specific stuff (e.g. preprocessor). We're okay though since this tool isn't used yet in our workflow. We will also need to verify the analysis results in detail before activating the check in CI, though I'm pretty sure it's close.
https://bugs.python.org/issue36876
Remove the global _Py_CheckRecursionLimit variable: it has been
replaced by ceval.recursion_limit of the PyInterpreterState
structure.
There is no need to keep the variable for the stable ABI, since
Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() were not usable
in Python 3.8 and older: these macros accessed PyThreadState members,
whereas the PyThreadState structure is opaque in the limited C API.
This is partly a cleanup of the code. It also is preparation for getting the variables from the source (cross-platform) rather than from the symbols.
The change only touches the tool (and its tests).
The "Slot" helper (descriptor) is leaking references due to its caching mechanism. The change includes a partial fix to Slot, but also adds Variable.storage to replace the problematic use of Slot.
https://bugs.python.org/issue38187