dSupport non-dict globals in LOAD_FROM_DICT_OR_GLOBALS
The implementation basically copies LOAD_GLOBAL. Possibly it could be deduplicated,
but that seems like it may get hairy since the two operations have different operands.
This is important to fix in 3.14 for PEP 649, but it's a bug in earlier versions too,
and we should backport to 3.13 and 3.12 if possible.
(cherry picked from commit 80a4e38994)
* Add docs for new APIs
* Add soft-deprecation notices
* Add What's New porting entries
* Update comments referencing `PyFrame_LocalsToFast()` to mention the proxy instead
* Other related cleanups found when looking for refs to the deprecated APIs
(cherry picked from commit 3859e09e3d)
Co-authored-by: Alyssa Coghlan <ncoghlan@gmail.com>
* Add CALL_PY_GENERAL, CALL_BOUND_METHOD_GENERAL and call CALL_NON_PY_GENERAL specializations.
* Remove CALL_PY_WITH_DEFAULTS specialization
* Use CALL_NON_PY_GENERAL in more cases when otherwise failing to specialize
* Target _FOR_ITER_TIER_TWO at POP_TOP following the matching END_FOR
* Modify _GUARD_NOT_EXHAUSTED_RANGE, _GUARD_NOT_EXHAUSTED_LIST and _GUARD_NOT_EXHAUSTED_TUPLE so that they also target the POP_TOP following the matching END_FOR
Makes sys.settrace, sys.setprofile, and monitoring generally thread-safe.
Mostly uses a stop-the-world approach and synchronization around the code object's _co_instrumentation_version. There may be a little bit of extra synchronization around the monitoring data that's required to be TSAN clean.
Introduce a unified 16-bit backoff counter type (``_Py_BackoffCounter``),
shared between the Tier 1 adaptive specializer and the Tier 2 optimizer. The
API used for adaptive specialization counters is changed but the behavior is
(supposed to be) identical.
The behavior of the Tier 2 counters is changed:
- There are no longer dynamic thresholds (we never varied these).
- All counters now use the same exponential backoff.
- The counter for ``JUMP_BACKWARD`` starts counting down from 16.
- The ``temperature`` in side exits starts counting down from 64.
This merges all `_CHECK_STACK_SPACE` uops in a trace into a single `_CHECK_STACK_SPACE_OPERAND` uop that checks whether there is enough stack space for all calls included in the entire trace.
This change adds an `eval_breaker` field to `PyThreadState`. The primary
motivation is for performance in free-threaded builds: with thread-local eval
breakers, we can stop a specific thread (e.g., for an async exception) without
interrupting other threads.
The source of truth for the global instrumentation version is stored in the
`instrumentation_version` field in PyInterpreterState. Threads usually read the
version from their local `eval_breaker`, where it continues to be colocated
with the eval breaker bits.