Mark the following thread_nt.h functions as static:
* AllocNonRecursiveMutex()
* FreeNonRecursiveMutex()
* EnterNonRecursiveMutex()
* LeaveNonRecursiveMutex()
py_win_perf_counter_frequency() no longer checks for
QueryPerformanceFrequency() failure. According to the
QueryPerformanceFrequency() documentation, the function can no longer
fails since Windows XP.
On Windows, time.sleep() now uses a waitable timer which has a
resolution of 100 ns (10^-7 sec). Previously, it had a solution of 1
ms (10^-3 sec).
* On Windows, time.sleep() now calls PyErr_CheckSignals() before
resetting the SIGINT event.
* Add _PyTime_As100Nanoseconds() function.
* Complete and update time.sleep() documentation.
Co-authored-by: Livius <egyszeregy@freemail.hu>
The main advantage is that the files will no longer show up in diffs and PRs. That means, for a PR, the number of files / lines changed will more clearly reflect the actual change. (This is essentially an un-revert of gh-28375.)
https://bugs.python.org/issue45020
The main advantage is that the files will no longer show up in diffs and PRs. That means, for a PR, the number of files / lines changed will more clearly reflect the actual change.
https://bugs.python.org/issue45020
Here's one more small cleanup that should have been in PR gh-28319. We eliminate stdout side-effects from importing the frozen __hello__ module, and update tests accordingly. We also move the module's source file into Lib/ from Toos/freeze/flag.py.
https://bugs.python.org/issue45019
Doing this provides significant performance gains for runtime startup (~15% with all the imported modules frozen). We don't yet freeze all the imported modules because there are a few hiccups in the build systems we need to sort out first. (See bpo-45186 and bpo-45188.)
Note that in PR GH-28320 we added a command-line flag (-X frozen_modules=[on|off]) that allows users to opt out of (or into) using frozen modules. The default is still "off" but we will change it to "on" as soon as we can do it in a way that does not cause contributors pain.
https://bugs.python.org/issue45020
Refactor pytime.c:
* Add pytime_from_nanoseconds() and pytime_as_nanoseconds(),
and use explicitly these functions
* Add two empty lines between functions
* PEP 7: add braces { ... }
* C99: declare variables where they are set
* Rename private functions to lowercase
* Rename error_time_t_overflow() to pytime_time_t_overflow()
* Rename win_perf_counter_frequency() to py_win_perf_counter_frequency()
* py_get_monotonic_clock(): add an assertion to detect overflow when
mach_absolute_time() unsigned uint64_t is casted to _PyTime_t
(signed int64_t).
_testcapi: use _PyTime_FromNanoseconds().
Currently we freeze several modules into the runtime. For each of these modules it is essential to bootstrapping the runtime that they be frozen. Any other stdlib module that we later freeze into the runtime is not essential. We can just as well import from the .py file. This PR lets users explicitly choose which should be used, with the new "-X frozen_modules=[on|off]" CLI flag. The default is "off" for now.
https://bugs.python.org/issue45020
There are a few things I missed in gh-27980. This is a follow-up that will make subsequent PRs cleaner. It includes fixes to tests and tools that reference the frozen modules.
https://bugs.python.org/issue45019
* Constructors of subclasses of some buitin classes (e.g. tuple, list,
frozenset) no longer accept arbitrary keyword arguments.
* Subclass of set can now define a __new__() method with additional
keyword parameters without overriding also __init__().
Release the GIL while performing isatty() system calls on arbitrary
file descriptors. In particular, this affects os.isatty(),
os.device_encoding() and io.TextIOWrapper. By extension,
io.open() in text mode is also affected.
Fix PyAiter_Check to only check for the `__anext__` presense (not for
`__aiter__`). Rename `PyAiter_Check()` to `PyAIter_Check()`,
`PyObject_GetAiter()` -> `PyObject_GetAIter()`.
Co-authored-by: Pablo Galindo Salgado <Pablogsal@gmail.com>
The binhex module, deprecated in Python 3.9, is now removed. The
following binascii functions, deprecated in Python 3.9, are now also
removed:
* a2b_hqx(), b2a_hqx();
* rlecode_hqx(), rledecode_hqx().
The binascii.crc_hqx() function remains available.
Fix indentation of <no Python frame> message in a faulthandler
traceback or a Fatal Python error traceback. Example:
Current thread 0x00007f03896fb740 (most recent call first):
Garbage-collecting
<no Python frame>
Frozen modules must be added to several files in order to work properly. Before this change this had to be done manually. Here we add a tool to generate the relevant lines in those files instead. This helps us avoid mistakes and omissions.
https://bugs.python.org/issue45019
Places the locals between the specials and stack. This is the more "natural" layout for a C struct, makes the code simpler and gives a slight speedup (~1%)
Implements a two steps check in `importlib._bootstrap._find_and_load()` to avoid locking when the module has been already imported and it's ready.
---
Using `importlib.__import__()`, after this, does show a big difference:
Before:
```
$ ./python -c 'import timeit; print(timeit.timeit("__import__(\"timeit\")", setup="from importlib import __import__"))'
15.92248619502061
```
After:
```
$ ./python -c 'import timeit; print(timeit.timeit("__import__(\"timeit\")", setup="from importlib import __import__"))'
1.206068897008663
```
---
* Refactor dispatch logic to make flow of control clearer. Moves lltrace and dxprofile instrumentation into DISPATCH macro.
* Remove switch in interpreter loop when using computed gotos. There is no need for two nearly-duplicate dispatch tables.
* Generalize cache names for LOAD_ATTR to allow store and delete specializations.
* Factor out specialization of attribute dictionary access.
* Specialize STORE_ATTR.
Fix the os.set_inheritable() function on FreeBSD 14 for file
descriptor opened with the O_PATH flag: ignore the EBADF error on
ioctl(), fallback on the fcntl() implementation.
The threading debug (PYTHONTHREADDEBUG environment variable) is
deprecated in Python 3.10 and will be removed in Python 3.12. This
feature requires a debug build of Python.
* Convert "specials" array to InterpreterFrame struct, adding f_lasti, f_state and other non-debug FrameObject fields to it.
* Refactor, calls pushing the call to the interpreter upward toward _PyEval_Vector.
* Compute f_back when on thread stack, only filling in value when frame object outlives stack invocation.
* Move ownership of InterpreterFrame in generator from frame object to generator object.
* Do not create frame objects for Python calls.
* Do not create frame objects for generators.
This is basically something that I noticed up while fixing test runs for another issue. It is really common to have multiline calls, and when they fail the display is kind of weird since we omit the annotations. E.g;
```
$ ./python t.py
Traceback (most recent call last):
File "/home/isidentical/cpython/cpython/t.py", line 11, in <module>
frame_1()
^^^^^^^^^
File "/home/isidentical/cpython/cpython/t.py", line 5, in frame_1
frame_2(
File "/home/isidentical/cpython/cpython/t.py", line 2, in frame_2
return a / 0 / b / c
~~^~~
ZeroDivisionError: division by zero
```
This patch basically adds support for annotating the rest of the line, if the instruction covers multiple lines (start_line != end_line).
Automerge-Triggered-By: GH:isidentical
The traceback.c and traceback.py mechanisms now utilize the newly added code.co_positions and PyCode_Addr2Location
to print carets on the specific expressions involved in a traceback.
Co-authored-by: Pablo Galindo <Pablogsal@gmail.com>
Co-authored-by: Ammar Askar <ammar@ammaraskar.com>
Co-authored-by: Batuhan Taskaya <batuhanosmantaskaya@gmail.com>
The new resizing system works like this;
```
$ cat t.py
a + a + a + b + c + a + a + a + b + c + a + a + a + b + c + a + a + a + b + c
[repeated 99 more times]
$ ./python t.py
RESIZE: prev len = 32, new len = 66
FINAL SIZE: 56
-----------------------------------------------------
RESIZE: prev len = 32, new len = 66
RESIZE: prev len = 66, new len = 134
RESIZE: prev len = 134, new len = 270
RESIZE: prev len = 270, new len = 542
RESIZE: prev len = 542, new len = 1086
RESIZE: prev len = 1086, new len = 2174
RESIZE: prev len = 2174, new len = 4350
RESIZE: prev len = 4350, new len = 8702
FINAL SIZE: 8004
```
So now we do considerably lower number of `_PyBytes_Resize` calls.
Automerge-Triggered-By: GH:isidentical
This PR is part of PEP 657 and augments the compiler to emit ending
line numbers as well as starting and ending columns from the AST
into compiled code objects. This allows bytecodes to be correlated
to the exact source code ranges that generated them.
This information is made available through the following public APIs:
* The `co_positions` method on code objects.
* The C API function `PyCode_Addr2Location`.
Co-authored-by: Batuhan Taskaya <isidentical@gmail.com>
Co-authored-by: Ammar Askar <ammar@ammaraskar.com>
A TypeError is now raised instead of an AttributeError in
"with" and "async with" statements for objects which do not
support the context manager or asynchronous context manager
protocols correspondingly.
Py_RunMain() now resets PyImport_Inittab to its initial value at
exit. It must be possible to call PyImport_AppendInittab() or
PyImport_ExtendInittab() at each Python initialization.
* Specialize obj.__class__ with LOAD_ATTR_SLOT
* Specialize instance attribute lookup with attribute on class, provided attribute on class is not an overriding descriptor.
* Add stat for how many times the unquickened instruction has executed.
Currently, if an arg value escapes (into the closure for an inner function) we end up allocating two indices in the fast locals even though only one gets used. Additionally, using the lower index would be better in some cases, such as with no-arg `super()`. To address this, we update the compiler to fix the offsets so each variable only gets one "fast local". As a consequence, now some cell offsets are interspersed with the locals (only when an arg escapes to an inner function).
https://bugs.python.org/issue43693
* Specialize LOAD_ATTR with LOAD_ATTR_SLOT and LOAD_ATTR_SPLIT_KEYS
* Move dict-common.h to internal/pycore_dict.h
* Add LOAD_ATTR_WITH_HINT specialized opcode.
* Quicken in function if loopy
* Specialize LOAD_ATTR for module attributes.
* Add specialization stats
This was reverted in GH-26596 (commit 6d518bb) due to some bad memory accesses.
* Add the MAKE_CELL opcode. (gh-26396)
The memory accesses have been fixed.
https://bugs.python.org/issue43693
This moves logic out of the frame initialization code and into the compiler and eval loop. Doing so simplifies the runtime code and allows us to optimize it better.
https://bugs.python.org/issue43693
These were reverted in gh-26530 (commit 17c4edc) due to refleaks.
* 2c1e258 - Compute deref offsets in compiler (gh-25152)
* b2bf2bc - Add new internal code objects fields: co_fastlocalnames and co_fastlocalkinds. (gh-26388)
This change fixes the refleaks.
https://bugs.python.org/issue43693
* Add co_firstinstr field to code object.
* Implement barebones quickening.
* Use non-quickened bytecode when tracing.
* Add NEWS item
* Add new file to Windows build.
* Don't specialize instructions with EXTENDED_ARG.
* Revert "bpo-43693: Compute deref offsets in compiler (gh-25152)"
This reverts commit b2bf2bc1ec.
* Revert "bpo-43693: Add new internal code objects fields: co_fastlocalnames and co_fastlocalkinds. (gh-26388)"
This reverts commit 2c1e2583fd.
These two commits are breaking the refleak buildbots.
Merges locals and cells into a single array.
Saves a pointer in the interpreter and means that we don't need the LOAD_CLOSURE opcode any more
https://bugs.python.org/issue43693
This commit stores the _PyRuntime structure in a section of the same name. This allows a debugging or crash reporting tool to quickly locate this structure at runtime without requiring the symbol table.
Co-authored-by: Pablo Galindo <pablogsal@gmail.com>
When compiling an AST object with a direct / indirect reference
cycles, on the conversion phase because of exceeding amount of
calls, a segfault was raised. This patch adds recursion guards to
places for preventing user inputs to not to crash AST but instead
raise a RecursionError.
A number of places in the code base (notably ceval.c and frameobject.c) rely on mapping variable names to indices in the frame "locals plus" array (AKA fast locals), and thus opargs. Currently the compiler indirectly encodes that information on the code object as the tuples co_varnames, co_cellvars, and co_freevars. At runtime the dependent code must calculate the proper mapping from those, which isn't ideal and impacts performance-sensitive sections. This is something we can easily address in the compiler instead.
This change addresses the situation by replacing internal use of co_varnames, etc. with a single combined tuple of names in locals-plus order, along with a minimal array mapping each to its kind (local vs. cell vs. free). These two new PyCodeObject fields, co_fastlocalnames and co_fastllocalkinds, are not exposed to Python code for now, but co_varnames, etc. are still available with the same values as before (though computed lazily).
Aside from the (mild) performance impact, there are a number of other benefits:
* there's now a clear, direct relationship between locals-plus and variables
* code that relies on the locals-plus-to-name mapping is simpler
* marshaled code objects are smaller and serialize/de-serialize faster
Also note that we can take this approach further by expanding the possible values in co_fastlocalkinds to include specific argument types (e.g. positional-only, kwargs). Doing so would allow further speed-ups in _PyEval_MakeFrameVector(), which is where args get unpacked into the locals-plus array. It would also allow us to shrink marshaled code objects even further.
https://bugs.python.org/issue43693
* Move up the comment about fields using in hashing/comparision.
* Group the fields more clearly.
* Add co_ncellvars and co_nfreevars.
* Raise ValueError if nlocals != len(varnames), rather than aborting.
* Remove 'zombie' frames. We won't need them once we are allocating fixed-size frames.
* Add co_nlocalplus field to code object to avoid recomputing size of locals + frees + cells.
* Move locals, cells and freevars out of frame object into separate memory buffer.
* Use per-threadstate allocated memory chunks for local variables.
* Move globals and builtins from frame object to per-thread stack.
* Move (slow) locals frame object to per-thread stack.
* Move internal frame functions to internal header.
Moreover, Py_FrozenMain() relies on Py_InitializeFromConfig() to
handle the PYTHONUNBUFFERED environment variable and configure C
stdio streams like stdout (make the stream unbuffered).
C-style formatting with literal format containing only format codes
%s, %r and %a (with optional width, precision and alignment)
will be converted to an equivalent f-string expression.
It can speed up formatting more than 2 times by eliminating
runtime parsing of the format string and creating temporary tuple.
"Zero cost" exception handling.
* Uses a lookup table to determine how to handle exceptions.
* Removes SETUP_FINALLY and POP_TOP block instructions, eliminating (most of) the runtime overhead of try statements.
* Reduces the size of the frame object by about 60%.
This fixes the following warning:
'initializing': conversion from 'Py_ssize_t' to 'int', possible loss of data [D:\a\cpython\cpython\PCbuild\pythoncore.vcxproj]
The PyStdPrinter_Type type now uses the
Py_TPFLAGS_DISALLOW_INSTANTIATION flag to disallow instantiation,
rather than seting a tp_init method which always fail.
Write also unit tests for PyStdPrinter_Type.
Add a new Py_TPFLAGS_DISALLOW_INSTANTIATION type flag to disallow
creating type instances: set tp_new to NULL and don't create the
"__new__" key in the type dictionary.
The flag is set automatically on static types if tp_base is NULL or
&PyBaseObject_Type and tp_new is NULL.
Use the flag on the following types:
* _curses.ncurses_version type
* _curses_panel.panel
* _tkinter.Tcl_Obj
* _tkinter.tkapp
* _tkinter.tktimertoken
* _xxsubinterpretersmodule.ChannelID
* sys.flags type
* sys.getwindowsversion() type
* sys.version_info type
Update MyStr example in the C API documentation to use
Py_TPFLAGS_DISALLOW_INSTANTIATION.
Add _PyStructSequence_InitType() function to create a structseq type
with the Py_TPFLAGS_DISALLOW_INSTANTIATION flag set.
type_new() calls _PyType_CheckConsistency() at exit.
* Add Py_TPFLAGS_SEQUENCE and Py_TPFLAGS_MAPPING, add to all relevant standard builtin classes.
* Set relevant flags on collections.abc.Sequence and Mapping.
* Use flags in MATCH_SEQUENCE and MATCH_MAPPING opcodes.
* Inherit Py_TPFLAGS_SEQUENCE and Py_TPFLAGS_MAPPING.
* Add NEWS
* Remove interpreter-state map_abc and seq_abc fields.
Accessing the following attributes will now fire PEP 578 style audit hooks as ("object.__getattr__", obj, name):
* PyTracebackObject: tb_frame
* PyFrameObject: f_code
* PyGenObject: gi_code, gi_frame
* PyCoroObject: cr_code, cr_frame
* PyAsyncGenObject: ag_code, ag_frame
Add an AUDIT_READ attribute flag aliased to READ_RESTRICTED.
Update obsolete flag documentation.
* Add length parameter to PyLineTable_InitAddressRange and doen't use sentinel values at end of table. Makes the line number table more robust.
* Update PyCodeAddressRange to match PEP 626.
This works by not caching the handle and instead getting the handle from
the file descriptor each time, so that if the actual handle changes by
fd redirection closing/opening the console handle beneath our feet, we
will keep working correctly.
To improve the user experience understanding what part of the error messages associated with SyntaxErrors is wrong, we can highlight the whole error range and not only place the caret at the first character. In this way:
>>> foo(x, z for z in range(10), t, w)
File "<stdin>", line 1
foo(x, z for z in range(10), t, w)
^
SyntaxError: Generator expression must be parenthesized
becomes
>>> foo(x, z for z in range(10), t, w)
File "<stdin>", line 1
foo(x, z for z in range(10), t, w)
^^^^^^^^^^^^^^^^^^^^
SyntaxError: Generator expression must be parenthesized
* Modify compiler to reduce stack consumption for large expressions.
* Add more tests for stack usage.
* Add NEWS item.
* Raise SystemError for truly excessive stack use.