Remove private _PyThreadState and _PyInterpreterState C API
functions: move them to the internal C API (pycore_pystate.h and
pycore_interp.h). Don't export most of these functions anymore, but
still export functions used by tests.
Remove _PyThreadState_Prealloc() and _PyThreadState_Init() from the C
API, but keep it in the stable API.
* Replace PyWeakref_GET_OBJECT() with _PyWeakref_GET_REF().
* _sqlite/blob.c now holds a strong reference to the blob object
while calling close_blob().
* _xidregistry_find_type() now holds a strong reference to registered
while using it.
* Add table describing possible executable classes for out-of-process debuggers.
* Remove shim code object creation code as it is no longer needed.
* Make lltrace a bit more robust w.r.t. non-standard frames.
For a while now, pending calls only run in the main thread (in the main interpreter). This PR changes things to allow any thread run a pending call, unless the pending call was explicitly added for the main thread to run.
The risk of a race with this state is relatively low, but we play it safe anyway. We do avoid using the lock in performance-sensitive cases where the risk of a race is very, very low.
This avoids the problematic race in drop_gil() by skipping the FORCE_SWITCHING code there for finalizing threads.
(The idea for this approach came out of discussions with @markshannon.)
This is the culmination of PEP 684 (and of my 8-year long multi-core Python project)!
Each subinterpreter may now be created with its own GIL (via Py_NewInterpreterFromConfig()). If not so configured then the interpreter will share with the main interpreter--the status quo since subinterpreters were added decades ago. The main interpreter always has its own GIL and subinterpreters from Py_NewInterpreter() will always share with the main interpreter.
In preparation for a per-interpreter GIL, we add PyInterpreterState.ceval.gil, set it to the shared GIL for each interpreter, and use that rather than using _PyRuntime.ceval.gil directly. Note that _PyRuntime.ceval.gil is still the actual GIL.
This function no longer makes sense, since its runtime parameter is
no longer used. Use directly _PyThreadState_GET() and
_PyInterpreterState_GET() instead.
This is strictly about moving the "obmalloc" runtime state from
`_PyRuntimeState` to `PyInterpreterState`. Doing so improves isolation
between interpreters, specifically most of the memory (incl. objects)
allocated for each interpreter's use. This is important for a
per-interpreter GIL, but such isolation is valuable even without it.
FWIW, a per-interpreter obmalloc is the proverbial
canary-in-the-coalmine when it comes to the isolation of objects between
interpreters. Any object that leaks (unintentionally) to another
interpreter is highly likely to cause a crash (on debug builds at
least). That's a useful thing to know, relative to interpreter
isolation.
We replace _PyRuntime.tstate_current with a thread-local variable. As part of this change, we add a _Py_thread_local macro in pyport.h (only for the core runtime) to smooth out the compiler differences. The main motivation here is in support of a per-interpreter GIL, but this change also provides some performance improvement opportunities.
Note that we do not provide a fallback to the thread-local, either falling back to the old tstate_current or to thread-specific storage (PyThread_tss_*()). If that proves problematic then we can circle back. I consider it unlikely, but will run the buildbots to double-check.
Also note that this does not change any of the code related to the GILState API, where it uses a thread state stored in thread-specific storage. I suspect we can combine that with _Py_tss_tstate (from here). However, that can be addressed separately and is not urgent (nor critical).
(While this change was mostly done independently, I did take some inspiration from earlier (~2020) work by @markshannon (main...markshannon:threadstate_in_tls) and @vstinner (#23976).)
* The majority of the monitoring code is in instrumentation.c
* The new instrumentation bytecodes are in bytecodes.c
* legacy_tracing.c adapts the new API to the old sys.setrace and sys.setprofile APIs
Sharing mutable (or non-immortal) objects between interpreters is generally not safe. We can work around that but not easily.
There are two restrictions that are critical for objects that break interpreter isolation.
The first is that the object's state be guarded by a global lock. For now the GIL meets this requirement, but a granular global lock is needed once we have a per-interpreter GIL.
The second restriction is that the object (and, for a container, its items) be deallocated/resized only when the interpreter in which it was allocated is the current one. This is because every interpreter has (or will have, see gh-101660) its own object allocator. Deallocating an object with a different allocator can cause crashes.
The dict for the cache of module defs is completely internal, which simplifies what we have to do to meet those requirements. To do so, we do the following:
* add a mechanism for re-using a temporary thread state tied to the main interpreter in an arbitrary thread
* add _PyRuntime.imports.extensions.main_tstate`
* add _PyThreadState_InitDetached() and _PyThreadState_ClearDetached() (pystate.c)
* add _PyThreadState_BindDetached() and _PyThreadState_UnbindDetached() (pystate.c)
* make sure the cache dict (_PyRuntime.imports.extensions.dict) and its items are all owned by the main interpreter)
* add a placeholder using for a granular global lock
Note that the cache is only used for legacy extension modules and not for multi-phase init modules.
https://github.com/python/cpython/issues/100227
This reverts commit 87be8d9.
This approach to keeping the interned strings safe is turning out to be too complex for my taste (due to obmalloc isolation). For now I'm going with the simpler solution, making the dict per-interpreter. We can revisit that later if we want a sharing solution.
This is effectively two changes. The first (the bulk of the change) is where we add _Py_AddToGlobalDict() (and _PyRuntime.cached_objects.main_tstate, etc.). The second (much smaller) change is where we update PyUnicode_InternInPlace() to use _Py_AddToGlobalDict() instead of calling PyDict_SetDefault() directly.
Basically, _Py_AddToGlobalDict() is a wrapper around PyDict_SetDefault() that should be used whenever we need to add a value to a runtime-global dict object (in the few cases where we are leaving the container global rather than moving it to PyInterpreterState, e.g. the interned strings dict). _Py_AddToGlobalDict() does all the necessary work to make sure the target global dict is shared safely between isolated interpreters. This is especially important as we move the obmalloc state to each interpreter (gh-101660), as well as, potentially, the GIL (PEP 684).
https://github.com/python/cpython/issues/100227
Moving it valuable with a per-interpreter GIL. However, it is also useful without one, since it allows us to identify refleaks within a single interpreter or where references are escaping an interpreter. This becomes more important as we move the obmalloc state to PyInterpreterState.
https://github.com/python/cpython/issues/102304
The essentially eliminates the global variable, with the associated benefits. This is also a precursor to isolating this bit of state to PyInterpreterState.
Folks that currently read _Py_RefTotal directly would have to start using _Py_GetGlobalRefTotal() instead.
https://github.com/python/cpython/issues/102304
It doesn't make sense to use multi-phase init for these modules. Using a per-interpreter "m_copy" (instead of PyModuleDef.m_base.m_copy) makes this work okay. (This came up while working on gh-101660.)
Note that we might instead end up disallowing re-load for sys/builtins since they are so special.
https://github.com/python/cpython/issues/102660
This change is almost entirely moving code around and hiding import state behind internal API. We introduce no changes to behavior, nor to non-internal API. (Since there was already going to be a lot of churn, I took this as an opportunity to re-organize import.c into topically-grouped sections of code.) The motivation is to simplify a number of upcoming changes.
Specific changes:
* move existing import-related code to import.c, wherever possible
* add internal API for interacting with import state (both global and per-interpreter)
* use only API outside of import.c (to limit churn there when changing the location, etc.)
* consolidate the import-related state of PyInterpreterState into a single struct field (this changes layout slightly)
* add macros for import state in import.c (to simplify changing the location)
* group code in import.c into sections
*remove _PyState_AddModule()
https://github.com/python/cpython/issues/101758
* Make sure that the current exception is always normalized.
* Remove redundant type and traceback fields for the current exception.
* Add new API functions: PyErr_GetRaisedException, PyErr_SetRaisedException
* Add new API functions: PyException_GetArgs, PyException_SetArgs
The GILState API (PEP 311) implementation from 2003 made the assumption that only one thread state would ever be used for any given OS thread, explicitly disregarding the case of subinterpreters. However, PyThreadState_Swap() still facilitated switching between subinterpreters, meaning the "current" thread state (holding the GIL), and the GILState thread state could end up out of sync, causing problems (including crashes).
This change addresses the issue by keeping the two in sync in PyThreadState_Swap(). I verified the fix against gh-99040.
Note that the other GILState-subinterpreter incompatibility (with autoInterpreterState) is not resolved here.
https://github.com/python/cpython/issues/59956
A PyThreadState can be in one of many states in its lifecycle, represented by some status value. Those statuses haven't been particularly clear, so we're addressing that here. Specifically:
* made the distinct lifecycle statuses clear on PyThreadState
* identified expectations of how various lifecycle-related functions relate to status
* noted the various places where those expectations don't match the actual behavior
At some point we'll need to address the mismatches.
(This change also includes some cleanup.)
https://github.com/python/cpython/issues/59956
We've factored out a struct from the two PyThreadState fields. This accomplishes two things:
* make it clear that the trashcan-related code doesn't need any other parts of PyThreadState
* allows us to use the trashcan mechanism even when there isn't a "current" thread state
We still expect the caller to hold the GIL.
https://github.com/python/cpython/issues/59956
This is a follow-up to gh-101161. The objective is to make it easier to read Python/pystate.c by grouping the functions there in a consistent way. This exclusively involves moving code around and adding various kinds of comments.
https://github.com/python/cpython/issues/59956
The objective of this change is to help make the GILState-related code easier to understand. This mostly involves moving code around and some semantically equivalent refactors. However, there are a also a small number of slight changes in structure and behavior:
* tstate_current is moved out of _PyRuntimeState.gilstate
* autoTSSkey is moved out of _PyRuntimeState.gilstate
* autoTSSkey is initialized earlier
* autoTSSkey is re-initialized (after fork) earlier
https://github.com/python/cpython/issues/59956
* Add API to allow extensions to set callback function on creation and destruction of PyCodeObject
Co-authored-by: Ye11ow-Flash <janshah@cs.stonybrook.edu>