* Rename `_testinternalcapi.get_{uop,counter}_optimizer` to `new_*_optimizer`
* Use `_PyUOpName()` instead of` _PyOpcode_uop_name[]`
* Add `target` to executor iterator items -- `list(ex)` now returns `(opcode, oparg, target, operand)` quadruples
* Add executor methods `get_opcode()` and `get_oparg()` to get `vmdata.opcode`, `vmdata.oparg`
* Define a helper for printing uops, and unify various places where they are printed
* Add a hack to summarize_stats.py to fix legacy uop names (e.g. `POP_TOP` -> `_POP_TOP`)
* Define helpers in `test_opt.py` for accessing the set or list of opnames of an executor
This adds `_PyMem_FreeDelayed()` and supporting functions. The
`_PyMem_FreeDelayed()` function frees memory with the same allocator as
`PyMem_Free()`, but after some delay to ensure that concurrent lock-free
readers have finished.
<pycore_time.h> include is no longer needed to get the PyTime_t type
in internal header files. This type is now provided by <Python.h>
include. Add <pycore_time.h> includes to C files instead.
This avoids filling the memory occupied by ob_tid, ob_ref_local, and
ob_ref_shared with debug bytes (e.g., 0xDD) in mimalloc in the
free-threaded build.
This change adds an `eval_breaker` field to `PyThreadState`. The primary
motivation is for performance in free-threaded builds: with thread-local eval
breakers, we can stop a specific thread (e.g., for an async exception) without
interrupting other threads.
The source of truth for the global instrumentation version is stored in the
`instrumentation_version` field in PyInterpreterState. Threads usually read the
version from their local `eval_breaker`, where it continues to be colocated
with the eval breaker bits.
This adds a safe memory reclamation scheme based on FreeBSD's "GUS" and
quiescent state based reclamation (QSBR). The API provides a mechanism
for callers to detect when it is safe to free memory that may be
concurrently accessed by readers.
The GC keeps track of the number of allocations (less deallocations)
since the last GC. This buffers the count in thread-local state and uses
atomic operations to modify the per-interpreter count. The thread-local
buffering avoids contention on shared state.
A consequence is that the GC scheduling is not as precise, so
"test_sneaky_frame_object" is skipped because it requires that the GC be
run exactly after allocating a frame object.
Makes _PyType_Lookup thread safe, including:
Thread safety of the underlying cache.
Make mutation of mro and type members thread safe
Also _PyType_GetMRO and _PyType_GetBases are currently returning borrowed references which aren't safe.
This is a temporary fix to unblock embedders that do not call Py_Main().
_PyInterpreterState_IsRunningMain() will always return true for the main interpreter, even in corner cases where it technically should not. The (future) full solution will do the right thing in those corner cases.
For the most part, these changes make is substantially easier to backport subinterpreter-related code to 3.12, especially the related modules (e.g. _xxsubinterpreters). The main motivation is to support releasing a PyPI package with the 3.13 capabilities compiled for 3.12.
A lot of the changes here involve either hiding details behind macros/functions or splitting up some files.
Setters for members with an unsigned integer type now support
the same range of valid values for objects that has a __index__()
method as for int.
Previously, Py_T_UINT, Py_T_ULONG and Py_T_ULLONG did not support
objects that has a __index__() method larger than LONG_MAX.
Py_T_ULLONG did not support negative ints. Now it supports them and
emits a RuntimeWarning.
Biased reference counting maintains two refcount fields in each object:
`ob_ref_local` and `ob_ref_shared`. The true refcount is the sum of these two
fields. In some cases, when refcounting operations are split across threads,
the ob_ref_shared field can be negative (although the total refcount must be
at least zero). In this case, the thread that decremented the refcount
requests that the owning thread give up ownership and merge the refcount
fields.
This changes a number of internal usages of `PyDict_SetDefault` to use `PyDict_SetDefaultRef`.
Co-authored-by: Erlend E. Aasland <erlend.aasland@protonmail.com>
This marks dead ThreadHandles as non-joinable earlier in
`PyOS_AfterFork_Child()` before we execute any Python code. The handles
are stored in a global linked list in `_PyRuntimeState` because `fork()`
affects the entire process.
Fix race between `_PyParkingLot_Park` and `_PyParkingLot_UnparkAll` when handling interrupts
There is a potential race when `_PyParkingLot_UnparkAll` is executing in
one thread and another thread is unblocked because of an interrupt in
`_PyParkingLot_Park`. Consider the following scenario:
1. Thread T0 is blocked[^1] in `_PyParkingLot_Park` on address `A`.
2. Thread T1 executes `_PyParkingLot_UnparkAll` on address `A`. It
finds the `wait_entry` for `T0` and unlinks[^2] its list node.
3. Immediately after (2), T0 is woken up due to an interrupt. It
then segfaults trying to unlink[^3] the node that was previously
unlinked in (2).
To fix this we mark each waiter as unparking before releasing the bucket
lock. `_PyParkingLot_Park` will wait to handle the coming wakeup, and not
attempt to unlink the node, when this field is set. `_PyParkingLot_Unpark`
does this already, presumably to handle this case.
* Fix a RuntimeWarning emitted when assign an integer-like value that
is not an instance of int to an attribute that corresponds to a C
struct member of type T_UINT and T_ULONG.
* Fix a double RuntimeWarning emitted when assign a negative integer value
to an attribute that corresponds to a C struct member of type T_UINT.
* gh-112529: Remove PyGC_Head from object pre-header in free-threaded build
This avoids allocating space for PyGC_Head in the free-threaded build.
The GC implementation for free-threaded CPython does not use the
PyGC_Head structure.
* The trashcan mechanism uses the `ob_tid` field instead of `_gc_prev`
in the free-threaded build.
* The GDB libpython.py file now determines the offset of the managed
dict field based on whether the running process is a free-threaded
build. Those are identified by the `ob_ref_local` field in PyObject.
* Fixes `_PySys_GetSizeOf()` which incorrectly incorrectly included the
size of `PyGC_Head` in the size of static `PyTypeObject`.
The free-threaded build's GC implementation is non-generational, but was
scheduled as if it were collecting a young generation leading to
quadratic behavior. This increases the minimum threshold and scales it
to the number of live objects as we do for the old generation in the
default build.
Note that the scheduling is still not thread-safe without the GIL. Those
changes will come in later PRs.
A few tests, like "test_sneaky_frame_object" rely on prompt scheduling
of the GC. For now, to keep that test passing, we disable the scaled
threshold after calls like `gc.set_threshold(1, 0, 0)`.
Add a configure define for HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE_NP and
replaces pthread_cond_timedwait() with pthread_cond_timedwait_relative_np()
for relative time when supported in semaphore waiting logic.
Add an option (--enable-experimental-jit for configure-based builds
or --experimental-jit for PCbuild-based ones) to build an
*experimental* just-in-time compiler, based on copy-and-patch (https://fredrikbk.com/publications/copy-and-patch.pdf).
See Tools/jit/README.md for more information on how to install the required build-time tooling.
For interpreters that share state with the main interpreter, this points
to the same static memory structure. For interpreters with their own
obmalloc state, it is heap allocated. Add free_obmalloc_arenas() which
will free the obmalloc arenas and radix tree structures for interpreters
with their own obmalloc state.
Co-authored-by: Eric Snow <ericsnowcurrently@gmail.com>
* gh-112529: Implement GC for free-threaded builds
This implements a mark and sweep GC for the free-threaded builds of
CPython. The implementation relies on mimalloc to find GC tracked
objects (i.e., "containers").
The `--disable-gil` builds occasionally need to pause all but one thread. Some
examples include:
* Cyclic garbage collection, where this is often called a "stop the world event"
* Before calling `fork()`, to ensure a consistent state for internal data structures
* During interpreter shutdown, to ensure that daemon threads aren't accessing Python objects
This adds the following functions to implement global and per-interpreter pauses:
* `_PyEval_StopTheWorldAll()` and `_PyEval_StartTheWorldAll()` (for the global runtime)
* `_PyEval_StopTheWorld()` and `_PyEval_StartTheWorld()` (per-interpreter)
(The function names may change.)
These functions are no-ops outside of the `--disable-gil` build.
* gh-112529: Use GC heaps for GC allocations in free-threaded builds
The free-threaded build's garbage collector implementation will need to
find GC objects by traversing mimalloc heaps. This hooks up the
allocation calls with the correct heaps by using a thread-local
"current_obj_heap" variable.
* Refactor out setting heap based on type
Fix a few places where the lltrace debug output printed ``(null)`` instead of an opcode name, because it was calling ``_PyUOpName()`` on a Tier-1 opcode.
It can be used to set the location of a .python_history file
---------
Co-authored-by: Levi Sabah <0xl3vi@gmail.com>
Co-authored-by: Hugo van Kemenade <hugovk@users.noreply.github.com>
This splits part of Modules/gcmodule.c of into Python/gc.c, which
now contains the core garbage collection implementation. The Python
module remain in the Modules/gcmodule.c file.
* gh-112532: Tag mimalloc heaps and pages
Mimalloc pages are data structures that contain contiguous allocations
of the same block size. Note that they are distinct from operating
system pages. Mimalloc pages are contained in segments.
When a thread exits, it abandons any segments and contained pages that
have live allocations. These segments and pages may be later reclaimed
by another thread. To support GC and certain thread-safety guarantees in
free-threaded builds, we want pages to only be reclaimed by the
corresponding heap in the claimant thread. For example, we want pages
containing GC objects to only be claimed by GC heaps.
This allows heaps and pages to be tagged with an integer tag that is
used to ensure that abandoned pages are only claimed by heaps with the
same tag. Heaps can be initialized with a tag (0-15); any page allocated
by that heap copies the corresponding tag.
* Fix conversion warning
* gh-112532: Isolate abandoned segments by interpreter
Mimalloc segments are data structures that contain memory allocations along
with metadata. Each segment is "owned" by a thread. When a thread exits,
it abandons its segments to a global pool to be later reclaimed by other
threads. This changes the pool to be per-interpreter instead of process-wide.
This will be important for when we use mimalloc to find GC objects in the
`--disable-gil` builds. We want heaps to only store Python objects from a
single interpreter. Absent this change, the abandoning and reclaiming process
could break this isolation.
* Add missing '&_mi_abandoned_default' to 'tld_empty'
* gh-112532: Use separate mimalloc heaps for GC objects
In `--disable-gil` builds, we now use four separate heaps in
anticipation of using mimalloc to find GC objects when the GIL is
disabled. To support this, we also make a few changes to mimalloc:
* `mi_heap_t` and `mi_tld_t` initialization is split from allocation.
This allows us to have a `mi_tld_t` per-`PyThreadState`, which is
important to keep interpreter isolation, since the same OS thread may
run in multiple interpreters (using different PyThreadStates.)
* Heap abandoning (mi_heap_collect_ex) can now be called from a
different thread than the one that created the heap. This is necessary
because we may clear and delete the containing PyThreadStates from a
different thread during finalization and after fork().
* Use enum instead of defines and guard mimalloc includes.
* The enum typedef will be convenient for future PRs that use the type.
* Guarding the mimalloc includes allows us to unconditionally include
pycore_mimalloc.h from other header files that rely on things like
`struct _mimalloc_thread_state`.
* Only define _mimalloc_thread_state in Py_GIL_DISABLED builds
Fix error check on mmap(2)
It should check MAP_FAILED instead of NULL for error.
On mmap(2) man page:
RETURN VALUE
On success, mmap() returns a pointer to the mapped area.
On error, the value MAP_FAILED (that is, (void *) -1) is
returned, and errno is set to indicate the error.
It was raised in two cases:
* in the import statement when looking up __import__
* in pickling some builtin type when looking up built-ins iter, getattr, etc.
We need the TracebackException of uncaught exceptions for a single purpose: the error display. Thus we only need to pass the formatted error display between interpreters. Passing a pickled TracebackException is overkill.
The `PyThreadState_Clear()` function must only be called with the GIL
held and must be called from the same interpreter as the passed in
thread state. Otherwise, any Python objects on the thread state may be
destroyed using the wrong interpreter, leading to memory corruption.
This is also important for `Py_GIL_DISABLED` builds because free lists
will be associated with PyThreadStates and cleared in
`PyThreadState_Clear()`.
This fixes two places that called `PyThreadState_Clear()` from the wrong
interpreter and adds an assertion to `PyThreadState_Clear()`.
When an exception is uncaught in Interpreter.exec_sync(), it helps to show that exception's error display if uncaught in the calling interpreter. We do so here by generating a TracebackException in the subinterpreter and passing it between interpreters using pickle.
This fixes a recently introduced bug where the deferred count is being unnecessarily decremented to counteract an increment elsewhere that is no longer happening. This caused the values to flip around to "very large" 64-bit numbers.
glibc-2.34 implements closefrom(3) using the same semantics as on BSD.
Check for closefrom() in configure and use the check result in
fileutils.c, rather than hardcoding a FreeBSD check.
Some implementations of closefrom() return an int. Explicitly discard
the return value by casting it to void, to avoid future compiler
warnings.
Signed-off-by: Sam James <sam@gentoo.org>
This replaces some usages of PyThread_type_lock with PyMutex, which does not require memory allocation to initialize.
This simplifies some of the runtime initialization and is also one step towards avoiding changing the default raw memory allocator during initialize/finalization, which can be non-thread-safe in some circumstances.
Every PyThreadState instance is now actually a _PyThreadStateImpl.
It is safe to cast from `PyThreadState*` to `_PyThreadStateImpl*` and back.
The _PyThreadStateImpl will contain fields that we do not want to expose
in the public C API.
This updates `dtoa.c` to avoid using the Bigint free-list in --disable-gil builds and
to pre-computes the needed powers of 5 during interpreter initialization.
* gh-111962: Make dtoa thread-safe in `--disable-gil` builds.
This avoids using the Bigint free-list in `--disable-gil` builds
and pre-computes the needed powers of 5 during interpreter initialization.
* Fix size of cached powers of 5 array.
We need the powers of 5 up to 5**512 because we only jump straight to
underflow when the exponent is less than -512 (or larger than 308).
* Rename Py_NOGIL to Py_GIL_DISABLED
* Changes from review
* Fix assertion placement
If the input prompt to the builtin input function on terminal has any null
character, then raise ValueError instead of silently truncating it.
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
Previously arbitrary errors could be cleared during formatting error
messages for ImportError or AttributeError for modules. Now all
unexpected errors are reported.