* gh-93503: Add APIs to set profiling and tracing functions in all threads in the C-API
* Use a separate API
* Fix NEWS entry
* Add locks around the loop
* Document ignoring exceptions
* Use the new APIs in the sys module
* Update docs
- "comparison of integers of different signs" in typeobject.c
- only define static_builtin_index_is_set in DEBUG builds
- only define recreate_gil with ifdef HAVE_FORK
Automate WASM build with a new Python script. The script provides
several build profiles with configure flags for Emscripten flavors
and WASI. The script can detect and use Emscripten SDK and WASI SDK from
default locations or env vars.
``configure`` now detects Node arguments and creates HOSTRUNNER
arguments for Node 16. It also sets correct arguments for
``wasm64-emscripten``.
Co-authored-by: Brett Cannon <brett@python.org>
We only statically initialize for core code and builtin modules. Extension modules still create
the tuple at runtime. We'll solve that part of interpreter isolation separately.
This change includes generated code. The non-generated changes are in:
* Tools/clinic/clinic.py
* Python/getargs.c
* Include/cpython/modsupport.h
* Makefile.pre.in (re-generate global strings after running clinic)
* very minor tweaks to Modules/_codecsmodule.c and Python/Python-tokenize.c
All other changes are generated code (clinic, global strings).
gh-93243
This PR is required to reduce diffs of the following porting (no need to either maintain documentation and tests consistent with each porting step, or try to port everything and remove smtpd in a single PR).
Automerge-Triggered-By: GH:warsaw
When keyword argument name is an instance of a str subclass with
overloaded methods __eq__ and __hash__, the former code could not find
the name of an extraneous keyword argument to report an error, and
_PyArg_UnpackKeywords() returned success without setting the
corresponding cell in the linearized arguments array. But since the number
of expected initialized cells is determined as the total number of passed
arguments, this lead to reading NULL as a keyword parameter value, that
caused SystemError or crash or other undesired behavior.
- check for ``dup()`` libc function
- handle missing ``F_DUPFD`` in ``dup2()`` replacement function
- add workaround for WASI libc bug in MSG_TRUNC
- ESHUTDOWN is missing, use EPIPE instead
- POLLPRI is missing, define as 0 (no-op)
Static builtin types are finalized by calling _PyStaticType_Dealloc(). Before this change, we were skipping finalizing such a type if it still had subtypes (i.e. its tp_subclasses hadn't been cleared yet). The problem is that types hold several heap objects, which leak if we skip the type's finalization. This change addresses that.
For context, there's an old comment (from e9e3eab0b8) that says the following:
// If a type still has subtypes, it cannot be deallocated.
// A subtype can inherit attributes and methods of its parent type,
// and a type must no longer be used once it's deallocated.
However, it isn't clear that is actually still true. Clearing tp_dict should mean it isn't a problem.
Furthermore, the only subtypes that might still be around come from extension modules that didn't clean them up when unloaded (i.e. extensions that do not implement multi-phase initialization, AKA PEP 489). Those objects are already leaking, so this change doesn't change anything in that regard. Instead, this change means more objects gets cleaned up that before.
This is the first of several precursors to storing tp_subclasses (and tp_weaklist) on the interpreter state for static builtin types.
We do the following:
* add `_PyStaticType_InitBuiltin()`
* add `_Py_TPFLAGS_STATIC_BUILTIN`
* set it on all static builtin types in `_PyStaticType_InitBuiltin()`
* shuffle some code around to be able to use _PyStaticType_InitBuiltin()
* rename `_PyStructSequence_InitType()` to `_PyStructSequence_InitBuiltinWithFlags()`
* add `_PyStructSequence_InitBuiltin()`.
* gh-93883: elide traceback indicators when possible
Elide traceback column indicators when the entire line of the
frame is implicated. This reduces traceback length and draws
even more attention to the remaining (very relevant) indicators.
Example:
```
Traceback (most recent call last):
File "query.py", line 99, in <module>
bar()
File "query.py", line 66, in bar
foo()
File "query.py", line 37, in foo
magic_arithmetic('foo')
File "query.py", line 18, in magic_arithmetic
return add_counts(x) / 25
^^^^^^^^^^^^^
File "query.py", line 24, in add_counts
return 25 + query_user(user1) + query_user(user2)
^^^^^^^^^^^^^^^^^
File "query.py", line 32, in query_user
return 1 + query_count(db, response['a']['b']['c']['user'], retry=True)
~~~~~~~~~~~~~~~~~~^^^^^
TypeError: 'NoneType' object is not subscriptable
```
Rather than going out of our way to provide indicator coverage
in every traceback test suite, the indicator test suite should
be responible for sufficient coverage (e.g. by adding a basic
exception group test to ensure that margin strings are covered).
Inlining of code that corresponds to source code lines, can make it hard to distinguish later between code which is only reachable from except handlers, and that which is reachable in normal control flow. This caused problems with the debugger's jump feature.
This PR turns off the inlining optimisation for code which has line numbers. We still inline things like the implicit "return None".