* Replace PyLong_AS_LONG() with PyLong_AsLong().
* Call PyLong_AsLong() only once per the replacement code.
* Use PyMapping_GetOptionalItem() instead of PyObject_GetItem().
Check that the current default heap is initialized in
`_mi_os_get_aligned_hint` and `mi_os_claim_huge_pages`.
The mimalloc function `_mi_os_get_aligned_hint` assumes that there is an
initialized default heap. This is true for our main thread, but not for
background threads. The problematic code path is usually called during
initialization (i.e., `Py_Initialize`), but it may also be called if the
program allocates large amounts of memory in total.
The crash only affected the free-threaded build.
There were a still a number of gaps in the tests, including not looking
at all the builtin types and not checking wrappers in subinterpreters
that weren't in the main interpreter. This fixes all that.
I considered incorporating the names of the PyTypeObject fields
(a la gh-122866), but figured doing so doesn't add much value.
This replaces `_PyList_FromArraySteal` with `_PyList_FromStackRefSteal`.
It's functionally equivalent, but takes a `_PyStackRef` array instead of
an array of `PyObject` pointers.
Co-authored-by: Ken Jin <kenjin@python.org>
* Parameters after the var-positional parameter are now keyword-only
instead of positional-or-keyword.
* Correctly calculate min_kw_only.
* Raise errors for invalid combinations of the var-positional parameter
with "*", "/" and deprecation markers.
We were not properly accounting for interpreter memory leaks at
shutdown and had two sources of leaks:
* Objects that use deferred reference counting and were reachable via
static types outlive the final GC. We now disable deferred reference
counting on all objects if we are calling the GC due to interpreter
shutdown.
* `_PyMem_FreeDelayed` did not properly check for interpreter shutdown
so we had some memory blocks that were enqueued to be freed, but
never actually freed.
* `_PyType_FinalizeIdPool` wasn't called at interpreter shutdown.
Return -1 and set an exception on error; return 0 if the iterator is
exhausted, and return 1 if the next item was fetched successfully.
Prefer this API to PyIter_Next(), which requires the caller to use
PyErr_Occurred() to differentiate between iterator exhaustion and errors.
Co-authered-by: Irit Katriel <iritkatriel@yahoo.com>
The free-threaded build partially stores heap type reference counts in
distributed manner in per-thread arrays. This avoids reference count
contention when creating or destroying instances.
Co-authored-by: Ken Jin <kenjin@python.org>
The `PyStructSequence` destructor would crash if it was deallocated after
its type's dictionary was cleared by the GC, because it couldn't compute
the "real size" of the instance. This could occur with relatively
straightforward code in the free-threaded build or with a reference
cycle involving the type in the default build, due to differing orders
in which `tp_clear()` was called.
Account for the non-sequence fields in `tp_basicsize` and use that,
along with `Py_SIZE()`, to compute the "real" size of a
`PyStructSequence` in the dealloc function. This avoids the accesses to
the type's dictionary during dealloc, which were unsafe.
* gh-120974: Make _asyncio._leave_task atomic in the free-threaded build
Update `_PyDict_DelItemIf` to allow for an argument to be passed to the
predicate.
This refactors asyncio to use the common freelist helper functions and
macros. As a side effect, the freelist for _asyncio.Future is now
re-enabled in the free-threaded build.
This combines and updates our freelist handling to use a consistent
implementation. Objects in the freelist are linked together using the
first word of memory block.
If configured with freelists disabled, these operations are essentially
no-ops.
compare_unicode_generic(), compare_unicode_unicode() and
compare_generic() are callbacks used by do_lookup(). When enabling
assertions, it's not possible to inline these functions.