* Remove unused <locale.h> includes.
* Remove unused <fcntl.h> include in traceback.h.
* Remove redundant <assert.h> and <stddef.h> includes. They are already
included by "Python.h".
* Remove <object.h> include in faulthandler.c. Python.h already includes it.
* Add missing <stdbool.h> in pycore_pythread.h if HAVE_PTHREAD_STUBS
is defined.
* Fix also warnings in pthread_stubs.h: don't redefine macros if they
are already defined, like the __NEED_pthread_t macro.
Functions like PyErr_SetFromErrno() and SetFromWindowsErr() should be
called immediately after using the C API which sets errno or the Windows
error code.
Move private functions to the internal C API (pycore_sysmodule.h):
* _PySys_GetAttr()
* _PySys_GetSizeOf()
No longer export most of these functions.
Fix also a typo in Include/cpython/optimizer.h: add a missing space.
Here we are doing no more than adding the value for Py_mod_multiple_interpreters and using it for stdlib modules. We will start checking for it in gh-104206 (once PyInterpreterState.ceval.own_gil is added in gh-104204).
Add `MS_WINDOWS_DESKTOP`, `MS_WINDOWS_APPS`, `MS_WINDOWS_SYSTEM` and `MS_WINDOWS_GAMES` preprocessor definitions to allow switching off functionality missing from particular API partitions ("partitions" are used in Windows to identify overlapping subsets of APIs).
CPython only officially supports `MS_WINDOWS_DESKTOP` and `MS_WINDOWS_SYSTEM` (APPS is included by normal desktop builds, but APPS without DESKTOP is not covered). Other configurations are a convenience for people building their own runtimes.
`MS_WINDOWS_GAMES` is for the Xbox subset of the Windows API, which is also available on client OS, but is restricted compared to `MS_WINDOWS_DESKTOP`. These restrictions may change over time, as they relate to the build headers rather than the OS support, and so we assume that Xbox builds will use the latest available version of the GDK.
builtins and extension module functions and methods that expect boolean values for parameters now accept any Python object rather than just a bool or int type. This is more consistent with how native Python code itself behaves.
Fix the faulthandler implementation of faulthandler.register(signal,
chain=True) if the sigaction() function is not available: don't call
the previous signal handler if it's NULL.
Move the follow functions and type from frameobject.h to pyframe.h,
so the standard <Python.h> provide frame getter functions:
* PyFrame_Check()
* PyFrame_GetBack()
* PyFrame_GetBuiltins()
* PyFrame_GetGenerator()
* PyFrame_GetGlobals()
* PyFrame_GetLasti()
* PyFrame_GetLocals()
* PyFrame_Type
Remove #include "frameobject.h" from many C files. It's no longer
needed.
It combines PyImport_ImportModule() and PyObject_GetAttrString()
and saves 4-6 lines of code on every use.
Add also _PyImport_GetModuleAttr() which takes Python strings as arguments.
Replace "(PyCFunction)(void(*)(void))func" cast with
_PyCFunction_CAST(func).
Change generated by the command:
sed -i -e \
's!(PyCFunction)(void(\*)(void)) *\([A-Za-z0-9_]\+\)!_PyCFunction_CAST(\1)!g' \
$(find -name "*.c")
Fix signal.NSIG value on FreeBSD to accept signal numbers greater
than 32, like signal.SIGRTMIN and signal.SIGRTMAX.
* Add Py_NSIG constant.
* Add pycore_signal.h internal header file.
* _Py_Sigset_Converter() now includes the range of valid signals in
the error message.
In Linux kernel 5.14 one can dynamically request size of altstacksize
based on hardware capabilities with getauxval(AT_MINSIGSTKSZ).
This changes allows for Python extension's request to Linux kernel
to use AMX_TILE instruction set on Sapphire Rapids Xeon processor
to succeed, unblocking use of the ISA in frameworks.
Introduced HAVE_LINUX_AUXVEC_H in configure.ac and pyconfig.h.in
Used cpython_autoconf:269 docker container to generate configure.
We're no longer using _Py_IDENTIFIER() (or _Py_static_string()) in any core CPython code. It is still used in a number of non-builtin stdlib modules.
The replacement is: PyUnicodeObject (not pointer) fields under _PyRuntimeState, statically initialized as part of _PyRuntime. A new _Py_GET_GLOBAL_IDENTIFIER() macro facilitates lookup of the fields (along with _Py_GET_GLOBAL_STRING() for non-identifier strings).
https://bugs.python.org/issue46541#msg411799 explains the rationale for this change.
The core of the change is in:
* (new) Include/internal/pycore_global_strings.h - the declarations for the global strings, along with the macros
* Include/internal/pycore_runtime_init.h - added the static initializers for the global strings
* Include/internal/pycore_global_objects.h - where the struct in pycore_global_strings.h is hooked into _PyRuntimeState
* Tools/scripts/generate_global_objects.py - added generation of the global string declarations and static initializers
I've also added a --check flag to generate_global_objects.py (along with make check-global-objects) to check for unused global strings. That check is added to the PR CI config.
The remainder of this change updates the core code to use _Py_GET_GLOBAL_IDENTIFIER() instead of _Py_IDENTIFIER() and the related _Py*Id functions (likewise for _Py_GET_GLOBAL_STRING() instead of _Py_static_string()). This includes adding a few functions where there wasn't already an alternative to _Py*Id(), replacing the _Py_Identifier * parameter with PyObject *.
The following are not changed (yet):
* stop using _Py_IDENTIFIER() in the stdlib modules
* (maybe) get rid of _Py_IDENTIFIER(), etc. entirely -- this may not be doable as at least one package on PyPI using this (private) API
* (maybe) intern the strings during runtime init
https://bugs.python.org/issue46541
PyThread_acquire_lock_timed() now clamps the timeout into the
[_PyTime_MIN; _PyTime_MAX] range (_PyTime_t type) if it is too large,
rather than calling Py_FatalError() which aborts the process.
PyThread_acquire_lock_timed() no longer uses
MICROSECONDS_TO_TIMESPEC() to compute sem_timedwait() argument, but
_PyTime_GetSystemClock() and _PyTime_AsTimespec_truncate().
Fix _thread.TIMEOUT_MAX value on Windows: the maximum timeout is
0x7FFFFFFF milliseconds (around 24.9 days), not 0xFFFFFFFF
milliseconds (around 49.7 days).
Set PY_TIMEOUT_MAX to 0x7FFFFFFF milliseconds, rather than 0xFFFFFFFF
milliseconds.
Fix PY_TIMEOUT_MAX overflow test: replace (us >= PY_TIMEOUT_MAX) with
(us > PY_TIMEOUT_MAX).
Replace _PyThreadState_GET() with _PyInterpreterState_GET() in
functions which only need the current interpreter, but don't need the
current Python thread state.
Replace also _PyThreadState_UncheckedGet() with _PyThreadState_GET()
in faulthandler.c, since _PyThreadState_UncheckedGet() is just an
alias to _PyThreadState_GET() in practice.
The Py_FatalError() function and the faulthandler module now dump the
list of extension modules on a fatal error.
Add _Py_DumpExtensionModules() and _PyModule_IsExtension() internal
functions.
The faulthandler module no longer allocates its alternative stack at
Python startup. Now the stack is only allocated at the first
faulthandler usage.
faulthandler no longer ignores memory allocation failure when
allocating the stack. sigaltstack() failure now raises an OSError
exception, rather than being ignored.
The alternative stack is no longer used if sigaction() is
not available. In practice, sigaltstack() should only be available
when sigaction() is avaialble, so this change should have no effect
in practice.
faulthandler.dump_traceback_later() internal locks are now only
allocated at the first dump_traceback_later() call, rather than
always being allocated at Python startup.
faulthandler now allocates a dedicated stack of SIGSTKSZ*2 bytes,
instead of just SIGSTKSZ bytes. Calling the previous signal handler
in faulthandler signal handler uses more than SIGSTKSZ bytes of stack
memory on some platforms.
* Add _PyInitError functions:
* _PyInitError_Ok()
* _PyInitError_Error()
* _PyInitError_NoMemory()
* _PyInitError_Exit()
* _PyInitError_IsError()
* _PyInitError_IsExit()
* _PyInitError_Failed()
* frozenmain.c and _testembed.c now use functions rather than macros.
* Move _Py_INIT_xxx() macros to the internal API.
* Move _PyWstrList_INIT macro to the internal API.
Fix invalid function cast warnings with gcc 8
for method conventions different from METH_NOARGS, METH_O and
METH_VARARGS excluding Argument Clinic generated code.
Adds configure flags for msan and ubsan builds to make it easier to enable.
These also encode the detail that address sanitizer and memory sanitizer
should disable pymalloc.
Define MEMORY_SANITIZER when appropriate at build time and adds workarounds
to existing code to mark things as initialized where the sanitizer is otherwise unable to
determine that. This lets our build succeed under the memory sanitizer. not all tests
pass without sanitizer failures yet but we're in pretty good shape after this.
METH_NOARGS functions need only a single argument but they are cast
into a PyCFunction, which takes two arguments. This triggers an
invalid function cast warning in gcc8 due to the argument mismatch.
Fix this by adding a dummy unused argument.