gh-113750: Fix object resurrection on free-threaded builds
This avoids the undesired re-initializing of fields like `ob_gc_bits`,
`ob_mutex`, and `ob_tid` when an object is resurrected due to its
finalizer being called.
This change has no effect on the default (with GIL) build.
This splits part of Modules/gcmodule.c of into Python/gc.c, which
now contains the core garbage collection implementation. The Python
module remain in the Modules/gcmodule.c file.
* gh-112532: Tag mimalloc heaps and pages
Mimalloc pages are data structures that contain contiguous allocations
of the same block size. Note that they are distinct from operating
system pages. Mimalloc pages are contained in segments.
When a thread exits, it abandons any segments and contained pages that
have live allocations. These segments and pages may be later reclaimed
by another thread. To support GC and certain thread-safety guarantees in
free-threaded builds, we want pages to only be reclaimed by the
corresponding heap in the claimant thread. For example, we want pages
containing GC objects to only be claimed by GC heaps.
This allows heaps and pages to be tagged with an integer tag that is
used to ensure that abandoned pages are only claimed by heaps with the
same tag. Heaps can be initialized with a tag (0-15); any page allocated
by that heap copies the corresponding tag.
* Fix conversion warning
* gh-112532: Isolate abandoned segments by interpreter
Mimalloc segments are data structures that contain memory allocations along
with metadata. Each segment is "owned" by a thread. When a thread exits,
it abandons its segments to a global pool to be later reclaimed by other
threads. This changes the pool to be per-interpreter instead of process-wide.
This will be important for when we use mimalloc to find GC objects in the
`--disable-gil` builds. We want heaps to only store Python objects from a
single interpreter. Absent this change, the abandoning and reclaiming process
could break this isolation.
* Add missing '&_mi_abandoned_default' to 'tld_empty'
* gh-112532: Use separate mimalloc heaps for GC objects
In `--disable-gil` builds, we now use four separate heaps in
anticipation of using mimalloc to find GC objects when the GIL is
disabled. To support this, we also make a few changes to mimalloc:
* `mi_heap_t` and `mi_tld_t` initialization is split from allocation.
This allows us to have a `mi_tld_t` per-`PyThreadState`, which is
important to keep interpreter isolation, since the same OS thread may
run in multiple interpreters (using different PyThreadStates.)
* Heap abandoning (mi_heap_collect_ex) can now be called from a
different thread than the one that created the heap. This is necessary
because we may clear and delete the containing PyThreadStates from a
different thread during finalization and after fork().
* Use enum instead of defines and guard mimalloc includes.
* The enum typedef will be convenient for future PRs that use the type.
* Guarding the mimalloc includes allows us to unconditionally include
pycore_mimalloc.h from other header files that rely on things like
`struct _mimalloc_thread_state`.
* Only define _mimalloc_thread_state in Py_GIL_DISABLED builds
We need the TracebackException of uncaught exceptions for a single purpose: the error display. Thus we only need to pass the formatted error display between interpreters. Passing a pickled TracebackException is overkill.
The `PyThreadState_Clear()` function must only be called with the GIL
held and must be called from the same interpreter as the passed in
thread state. Otherwise, any Python objects on the thread state may be
destroyed using the wrong interpreter, leading to memory corruption.
This is also important for `Py_GIL_DISABLED` builds because free lists
will be associated with PyThreadStates and cleared in
`PyThreadState_Clear()`.
This fixes two places that called `PyThreadState_Clear()` from the wrong
interpreter and adds an assertion to `PyThreadState_Clear()`.
When an exception is uncaught in Interpreter.exec_sync(), it helps to show that exception's error display if uncaught in the calling interpreter. We do so here by generating a TracebackException in the subinterpreter and passing it between interpreters using pickle.
* gh-110820: Make sure processor specific defines are correct for Universal 2 build on macOS
A number of processor specific defines are different for x86-64 and
arm64, and need to be adjusted in pymacconfig.h.
* remove debug stuf
This replaces some usages of PyThread_type_lock with PyMutex, which does not require memory allocation to initialize.
This simplifies some of the runtime initialization and is also one step towards avoiding changing the default raw memory allocator during initialize/finalization, which can be non-thread-safe in some circumstances.
Every PyThreadState instance is now actually a _PyThreadStateImpl.
It is safe to cast from `PyThreadState*` to `_PyThreadStateImpl*` and back.
The _PyThreadStateImpl will contain fields that we do not want to expose
in the public C API.
This updates `dtoa.c` to avoid using the Bigint free-list in --disable-gil builds and
to pre-computes the needed powers of 5 during interpreter initialization.
* gh-111962: Make dtoa thread-safe in `--disable-gil` builds.
This avoids using the Bigint free-list in `--disable-gil` builds
and pre-computes the needed powers of 5 during interpreter initialization.
* Fix size of cached powers of 5 array.
We need the powers of 5 up to 5**512 because we only jump straight to
underflow when the exponent is less than -512 (or larger than 308).
* Rename Py_NOGIL to Py_GIL_DISABLED
* Changes from review
* Fix assertion placement
* Implement _Py_HashPointerRaw() as a static inline function.
* Add Py_HashPointer() tests to test_capi.test_hash.
* Keep _Py_HashPointer() function as an alias to Py_HashPointer().
Change the declaration of the keywords parameter in functions
PyArg_ParseTupleAndKeywords() and PyArg_VaParseTupleAndKeywords() from `char **`
to `char * const *` in C and `const char * const *` in C++.
It makes these functions compatible with argument of type `const char * const *`,
`const char **` or `char * const *` in C++ and `char * const *` in C
without explicit type cast.
Co-authored-by: C.A.M. Gerlach <CAM.Gerlach@Gerlach.CAM>
Use a fraction internally in the _PyTime API to reduce the risk of
integer overflow: simplify the fraction using Greatest Common
Divisor (GCD). The fraction API is used by time functions:
perf_counter(), monotonic() and process_time().
For example, QueryPerformanceFrequency() usually returns 10 MHz on
Windows 10 and newer. The fraction SEC_TO_NS / frequency =
1_000_000_000 / 10_000_000 can be simplified to 100 / 1.
* Add _PyTimeFraction type.
* Add functions:
* _PyTimeFraction_Set()
* _PyTimeFraction_Mul()
* _PyTimeFraction_Resolution()
* No longer check "numer * denom <= _PyTime_MAX" in
_PyTimeFraction_Set(). _PyTimeFraction_Mul() uses _PyTime_Mul()
which handles integer overflow.
* Move _PyRuntimeState.time to _posixstate.ticks_per_second and
time_module_state.ticks_per_second.
* Add time_module_state.clocks_per_second.
* Rename _PyTime_GetClockWithInfo() to py_clock().
* Rename _PyTime_GetProcessTimeWithInfo() to py_process_time().
* Add process_time_times() helper function, called by
py_process_time().
* os.times() is now always built: no longer rely on HAVE_TIMES.
If Py_NOGIL is defined and Py_SET_REFCNT() is called with a reference
count larger than UINT32_MAX, make the object immortal.
Set _Py_IMMORTAL_REFCNT constant type to Py_ssize_t to fix the
following compiler warning:
Include/internal/pycore_global_objects_fini_generated.h:14:24:
warning: comparison of integers of different signs: 'Py_ssize_t'
(aka 'long') and 'unsigned int' [-Wsign-compare]
if (Py_REFCNT(obj) < _Py_IMMORTAL_REFCNT) {
~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~~~~~~
Add support for TLS-PSK (pre-shared key) to the ssl module.
---------
Co-authored-by: Oleg Iarygin <oleg@arhadthedev.net>
Co-authored-by: Gregory P. Smith <greg@krypto.org>
This makes the Tier 2 interpreter a little faster.
I calculated by about 3%,
though I hesitate to claim an exact number.
This starts by doubling the trace size limit (to 512),
making it more likely that loops fit in a trace.
The rest of the approach is to only load
`oparg` and `operand` in cases that use them.
The code generator know when these are used.
For `oparg`, it will conditionally emit
```
oparg = CURRENT_OPARG();
```
at the top of the case block.
(The `oparg` variable may be referenced multiple times
by the instructions code block, so it must be in a variable.)
For `operand`, it will use `CURRENT_OPERAND()` directly
instead of referencing the `operand` variable,
which no longer exists.
(There is only one place where this will be used.)
This uses the new mechanism whereby certain uops
are replaced by others during translation,
using the `_PyUop_Replacements` table.
We further special-case the `_FOR_ITER_TIER_TWO` uop
to update the deoptimization target to point
just past the corresponding `END_FOR` opcode.
Two tiny code cleanups are also part of this PR.
- Double max trace size to 256
- Add a dependency on executor_cases.c.h for ceval.o
- Mark `_SPECIALIZE_UNPACK_SEQUENCE` as `TIER_ONE_ONLY`
- Add debug output back showing the optimized trace
- Bunch of cleanups to Tools/cases_generator/
* Run again test_ast_recursion_limit() on WASI platform.
* Add _testinternalcapi.get_c_recursion_remaining().
* Fix test_ast and test_sys_settrace: test_ast_recursion_limit() and
test_trace_unpack_long_sequence() now adjust the maximum recursion
depth depending on the the remaining C recursion.
* Replace jumps with deopts in tier 2
* Fewer special cases of uop names
* Add target field to uop IR
* Remove more redundant SET_IP and _CHECK_VALIDITY micro-ops
* Extend whitelist of non-escaping API functions.
_PyDict_Pop_KnownHash(): remove the default value and the return type
becomes an int.
Co-authored-by: Stefan Behnel <stefan_ml@behnel.de>
Co-authored-by: Antoine Pitrou <pitrou@free.fr>
* Split list_extend() into two sub-functions: list_extend_fast() and
list_extend_iter().
* list_inplace_concat() no longer has to call Py_DECREF() on the
list_extend() result, since list_extend() now returns an int.
This adds a macro `Py_CAN_START_THREADS` that corresponds to the Python
function `test.support.threading_helper.can_start_thread()`. WASI and
some Emscripten builds do not have a working pthread implementation.
This macro is used to guard the critical sections C API tests that
require a working threads implementation.
Critical sections are helpers to replace the global interpreter lock
with finer grained locking. They provide similar guarantees to the GIL
and avoid the deadlock risk that plain locking involves. Critical
sections are implicitly ended whenever the GIL would be released. They
are resumed when the GIL would be acquired. Nested critical sections
behave as if the sections were interleaved.
* Revert "gh-111089: Use PyUnicode_AsUTF8() in Argument Clinic (#111585)"
This reverts commit d9b606b3d0.
* Revert "gh-111089: Use PyUnicode_AsUTF8() in getargs.c (#111620)"
This reverts commit cde1071b2a.
* Revert "gh-111089: PyUnicode_AsUTF8() now raises on embedded NUL (#111091)"
This reverts commit d731579bfb.
* Revert "gh-111089: Add PyUnicode_AsUTF8() to the limited C API (#111121)"
This reverts commit d8f32be5b6.
* Revert "gh-111089: Use PyUnicode_AsUTF8() in sqlite3 (#111122)"
This reverts commit 37e4e20eaa.
I added _Py_excinfo to the internal API (and added its functions in Python/errors.c) in gh-111530 (9322ce9). Since then I've had a nagging sense that I should have added the type and functions in its own PR. While I do plan on using _Py_excinfo outside crossinterp.c very soon (see gh-111572/gh-111573), I'd still feel more comfortable if the _Py_excinfo stuff went in as its own PR. Hence, here we are.
(FWIW, I may combine that with gh-111572, which I may, in turn, combine with gh-111573. We'll see.)
Joining a thread now ensures the underlying OS thread has exited. This is required for safer fork() in multi-threaded processes.
---------
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
gh-106168: Update the size only after setting the item, to avoid temporary inconsistencies.
Also remove the "what's new" sentence regarding the size setting since tuples cannot grow after allocation.
This moves several general internal APIs out of _xxsubinterpretersmodule.c and into the new Python/crossinterp.c (and the corresponding internal headers).
Specifically:
* _Py_excinfo, etc.: the initial implementation for non-object exception snapshots (in pycore_pyerrors.h and Python/errors.c)
* _PyXI_exception_info, etc.: helpers for passing an exception beween interpreters (wraps _Py_excinfo)
* _PyXI_namespace, etc.: helpers for copying a dict of attrs between interpreters
* _PyXI_Enter(), _PyXI_Exit(): functions that abstract out the transitions between one interpreter and a second that will do some work temporarily
Again, these were all abstracted out of _xxsubinterpretersmodule.c as generalizations. I plan on proposing these as public API at some point.
This is partly to clear this stuff out of pystate.c, but also in preparation for moving some code out of _xxsubinterpretersmodule.c. This change also moves this stuff to the internal API (new: Include/internal/pycore_crossinterp.h). @vstinner did this previously and I undid it. Now I'm re-doing it. :/
mi_atomic_load_explicit() casts 'p' argument to drop the 'const'
qualifier on Windows arm64 platform. Fix the compiler warning:
'function': different 'const' qualifiers
(compiling source file ..\Objects\mimalloc\options.c)
* Add mimalloc v2.12
Modified src/alloc.c to remove include of alloc-override.c and not
compile new handler.
Did not include the following files:
- include/mimalloc-new-delete.h
- include/mimalloc-override.h
- src/alloc-override-osx.c
- src/alloc-override.c
- src/static.c
- src/region.c
mimalloc is thread safe and shares a single heap across all runtimes,
therefore finalization and getting global allocated blocks across all
runtimes is different.
* mimalloc: minimal changes for use in Python:
- remove debug spam for freeing large allocations
- use same bytes (0xDD) for freed allocations in CPython and mimalloc
This is important for the test_capi debug memory tests
* Don't export mimalloc symbol in libpython.
* Enable mimalloc as Python allocator option.
* Add mimalloc MIT license.
* Log mimalloc in Lib/test/pythoninfo.py.
* Document new mimalloc support.
* Use macro defs for exports as done in:
https://github.com/python/cpython/pull/31164/
Co-authored-by: Sam Gross <colesbury@gmail.com>
Co-authored-by: Christian Heimes <christian@python.org>
Co-authored-by: Victor Stinner <vstinner@python.org>
Check the index bound assertions in PyList_SET_ITEM() against [0:allocated] instead of [0:size] to re-allow valid use cases that assign within the allocated area.
* gh-106320: Re-add _PyLong_FromByteArray(), _PyLong_AsByteArray() and _PyLong_GCD() to the public header files since they are used by third-party packages and there is no efficient replacement.
See https://github.com/python/cpython/issues/111140
See https://github.com/python/cpython/issues/111139
* gh-111262: Re-add _PyDict_Pop() to have a C-API until a new public one is designed.
Fixes#109894
* set `interp.static_objects.last_resort_memory_error.args` to empty tuple to avoid crash on `PyErr_Display()` call
* allow `_PyExc_InitGlobalObjects()` to be called on subinterpreter init
---------
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
Add PyUnicode_AsUTF8() function to the limited C API.
multiprocessing posixshmem now uses PyUnicode_AsUTF8() instead of
PyUnicode_AsUTF8AndSize(): the extension is built with the limited C
API. The function now raises an exception if the filename contains an
embedded null character instead of truncating silently the filename.
* PyUnicode_AsUTF8() now raises an exception if the string contains
embedded null characters.
* Update related C API tests (test_capi.test_unicode).
* type_new_set_doc() uses PyUnicode_AsUTF8AndSize() to silently
truncate doc containing null bytes.
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
There were a few things I did in gh-110565 that need to be fixed. I also forgot to add tests in that PR.
(Note that this PR exposes a refleak introduced by gh-110246. I'll take care of that separately.)
The PySys_Audit() function was added in Python 3.8 by the PEP 578
"Python Runtime Audit Hooks".
Add also PySys_AuditTuple() to the limited C API, function added
to Python 3.13.
Move non-limited "PerfMap" C API from Include/sysmodule.h to
Include/cpython/sysmodule.h.
Move the following private functions and structures to
pycore_modsupport.h internal C API:
* _PyArg_BadArgument()
* _PyArg_CheckPositional()
* _PyArg_NoKeywords()
* _PyArg_NoPositional()
* _PyArg_ParseStack()
* _PyArg_ParseStackAndKeywords()
* _PyArg_Parser structure
* _PyArg_UnpackKeywords()
* _PyArg_UnpackKeywordsWithVararg()
* _PyArg_UnpackStack()
* _Py_ANY_VARARGS()
Changes:
* Python/getargs.h now includes pycore_modsupport.h to export
functions.
* clinic.py now adds pycore_modsupport.h when one of these functions
is used.
* Add pycore_modsupport.h includes when a C extension uses one of
these functions.
* Define Py_BUILD_CORE_MODULE in C extensions which now include
directly or indirectly (via code generated by Argument Clinic)
pycore_modsupport.h:
* _csv
* _curses_panel
* _dbm
* _gdbm
* _multiprocessing.posixshmem
* _sqlite.row
* _statistics
* grp
* resource
* syslog
* _testcapi: bad_get() no longer uses METH_FASTCALL calling
convention but METH_VARARGS. Replace _PyArg_UnpackStack() with
PyArg_ParseTuple().
* _testcapi: add PYTESTCAPI_NEED_INTERNAL_API macro which is defined
by _testcapi sub-modules which need the internal C API
(pycore_modsupport.h): exceptions.c, float.c, vectorcall.c,
watchers.c.
* Remove Include/cpython/modsupport.h header file.
Include/modsupport.h no longer includes the removed header file.
* Fix mypy clinic.py
* Only add Py_MOD_PER_INTERPRETER_GIL_SUPPORTED to limited C API
version 3.13.
* errno, xxlimited and _ctypes_test extensions now need the limited C
API version 3.13 to get Py_MOD_PER_INTERPRETER_GIL_SUPPORTED. They
now include standard header files explicitly: <errno.h>, <string.h>
and <stdio.h>.
* xxlimited_35: Remove Py_mod_multiple_interpreters slot,
incompatible with limited C API version 3.5.
Add PyMem_RawMalloc(), PyMem_RawCalloc(), PyMem_RawRealloc() and
PyMem_RawFree() to the limited C API.
These functions were added by Python 3.4 and are needed to port
stdlib extensions to the limited C API, like grp and pwd.
Co-authored-by: Erlend E. Aasland <erlend@python.org>
If the Py_LIMITED_API macro is defined, Py_BUILD_CORE,
Py_BUILD_CORE_BUILTIN and Py_BUILD_CORE_MODULE macros are now
undefined by Python.h.
Only undefine these 3 macros after including "exports.h" which uses
them to define PyAPI_FUNC(), PyAPI_DATA() and PyMODINIT_FUNC macros.
Remove hacks (undefine manually the 3 Py_BUILD_CORE macros) in
Modules/_testcapi/parts.h and Modules/_testclinic_limited.c.
Add wrapper for timerfd_create, timerfd_settime, and timerfd_gettime to os module.
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
Co-authored-by: Adam Turner <9087854+AA-Turner@users.noreply.github.com>
Co-authored-by: Erlend E. Aasland <erlend.aasland@protonmail.com>
Co-authored-by: Victor Stinner <vstinner@python.org>
sys.audit() now has assertions to check that the event argument is
not NULL and that the format argument does not use the "N" format.
Add tests on PySys_AuditTuple().
This adds a new field 'state' to PyThreadState that can take on one of three values: _Py_THREAD_ATTACHED, _Py_THREAD_DETACHED, or _Py_THREAD_GC. The "attached" and "detached" states correspond closely to acquiring and releasing the GIL. The "gc" state is current unused, but will be used to implement stop-the-world GC for --disable-gil builds in the near future.
We do the following:
* add a per-interpreter XID registry (PyInterpreterState.xidregistry)
* put heap types there (keep static types in _PyRuntimeState.xidregistry)
* clear the registries during interpreter/runtime finalization
* avoid duplicate entries in the registry (when _PyCrossInterpreterData_RegisterClass() is called more than once for a type)
* use Py_TYPE() instead of PyObject_Type() in _PyCrossInterpreterData_Lookup()
The per-interpreter registry helps preserve isolation between interpreters. This is important when heap types are registered, which is something we haven't been doing yet but I will likely do soon.
Add PyThreadState_GetUnchecked() function: similar to
PyThreadState_Get(), but don't issue a fatal error if it is NULL. The
caller is responsible to check if the result is NULL. Previously,
this function was private and known as _PyThreadState_UncheckedGet().
In a few places we switch to another interpreter without knowing if it has a thread state associated with the current thread. For the main interpreter there wasn't much of a problem, but for subinterpreters we were *mostly* okay re-using the tstate created with the interpreter (located via PyInterpreterState_ThreadHead()). There was a good chance that tstate wasn't actually in use by another thread.
However, there are no guarantees of that. Furthermore, re-using an already used tstate is currently fragile. To address this, now we create a new thread state in each of those places and use it.
One consequence of this change is that PyInterpreterState_ThreadHead() may not return NULL (though that won't happen for the main interpreter).
The existence of background threads running on a subinterpreter was preventing interpreters from getting properly destroyed, as well as impacting the ability to run the interpreter again. It also affected how we wait for non-daemon threads to finish.
We add PyInterpreterState.threads.main, with some internal C-API functions.
This change makes sure sys.path[0] is set properly for subinterpreters. Before, it wasn't getting set at all. This PR does not address the broader concerns from gh-109853.
Make PyObject_VisitManagedDict() and PyObject_ClearManagedDict()
functions public in Python 3.13 C API.
* Rename _PyObject_VisitManagedDict() to PyObject_VisitManagedDict().
* Rename _PyObject_ClearManagedDict() to PyObject_ClearManagedDict().
* Document these functions.
If the timeout is greater than PY_TIMEOUT_MAX,
PyThread_acquire_lock_timed() uses a timeout of PY_TIMEOUT_MAX
microseconds, which is around 280.6 years. This case is unlikely and
limiting a timeout to 280.6 years sounds like a reasonable trade-off.
The constant PY_TIMEOUT_MAX is not used in PyPI top 5,000 projects.
* Remove unused <locale.h> includes.
* Remove unused <fcntl.h> include in traceback.h.
* Remove redundant <assert.h> and <stddef.h> includes. They are already
included by "Python.h".
* Remove <object.h> include in faulthandler.c. Python.h already includes it.
* Add missing <stdbool.h> in pycore_pythread.h if HAVE_PTHREAD_STUBS
is defined.
* Fix also warnings in pthread_stubs.h: don't redefine macros if they
are already defined, like the __NEED_pthread_t macro.
* pycore_pythread.h is now the central place to make sure that
_POSIX_THREADS and _POSIX_SEMAPHORES macros are defined if
available.
* Make sure that pycore_pythread.h is included when _POSIX_THREADS
and _POSIX_SEMAPHORES macros are tested.
* PY_TIMEOUT_MAX is now defined as a constant, since its value
depends on _POSIX_THREADS, instead of being defined as a macro.
* Prevent integer overflow in the preprocessor when computing
PY_TIMEOUT_MAX_VALUE on Windows:
replace "0xFFFFFFFELL * 1000 < LLONG_MAX"
with "0xFFFFFFFELL < LLONG_MAX / 1000".
* Document the change and give hints how to fix affected code.
* Add an exception for PY_TIMEOUT_MAX name to smelly.py
* Add PY_TIMEOUT_MAX to the stable ABI
These are the most popular specializations of `LOAD_ATTR` and `STORE_ATTR`
that weren't already viable uops:
* Split LOAD_ATTR_METHOD_WITH_VALUES
* Split LOAD_ATTR_METHOD_NO_DICT
* Split LOAD_ATTR_SLOT
* Split STORE_ATTR_SLOT
* Split STORE_ATTR_INSTANCE_VALUE
Also:
* Add `-v` flag to code generator which prints a list of non-viable uops
(easter-egg: it can print execution counts -- see source)
* Double _Py_UOP_MAX_TRACE_LENGTH to 128
I had dropped one of the DEOPT_IF() calls! :-(
PyMutex is a one byte lock with fast, inlineable lock and unlock functions for the common uncontended case. The design is based on WebKit's WTF::Lock.
PyMutex is built using the _PyParkingLot APIs, which provides a cross-platform futex-like API (based on WebKit's WTF::ParkingLot). This internal API will be used for building other synchronization primitives used to implement PEP 703, such as one-time initialization and events.
This also includes tests and a mini benchmark in Tools/lockbench/lockbench.py to compare with the existing PyThread_type_lock.
Uncontended acquisition + release:
* Linux (x86-64): PyMutex: 11 ns, PyThread_type_lock: 44 ns
* macOS (arm64): PyMutex: 13 ns, PyThread_type_lock: 18 ns
* Windows (x86-64): PyMutex: 13 ns, PyThread_type_lock: 38 ns
PR Overview:
The primary purpose of this PR is to implement PyMutex, but there are a number of support pieces (described below).
* PyMutex: A 1-byte lock that doesn't require memory allocation to initialize and is generally faster than the existing PyThread_type_lock. The API is internal only for now.
* _PyParking_Lot: A futex-like API based on the API of the same name in WebKit. Used to implement PyMutex.
* _PyRawMutex: A word sized lock used to implement _PyParking_Lot.
* PyEvent: A one time event. This was used a bunch in the "nogil" fork and is useful for testing the PyMutex implementation, so I've included it as part of the PR.
* pycore_llist.h: Defines common operations on doubly-linked list. Not strictly necessary (could do the list operations manually), but they come up frequently in the "nogil" fork. ( Similar to https://man.freebsd.org/cgi/man.cgi?queue)
---------
Co-authored-by: Eric Snow <ericsnowcurrently@gmail.com>
On a Python built in debug mode, Py_DECREF() now calls
_Py_NegativeRefcount() if the object is a dangling pointer to
deallocated memory: memory filled with 0xDD "dead byte" by the debug
hook on memory allocators. The fix is to check the reference count
*before* checking for _Py_IsImmortal().
Add test_decref_freed_object() to test_capi.test_misc.
There is a WIP proposal to enable webassembly stack switching which have been
implemented in v8:
https://github.com/WebAssembly/js-promise-integration
It is not possible to switch stacks that contain JS frames so the Emscripten JS
trampolines that allow calling functions with the wrong number of arguments
don't work in this case. However, the js-promise-integration proposal requires
the [type reflection for Wasm/JS API](https://github.com/WebAssembly/js-types)
proposal, which allows us to actually count the number of arguments a function
expects.
For better compatibility with stack switching, this PR checks if type reflection
is available, and if so we use a switch block to decide the appropriate
signature. If type reflection is unavailable, we should use the current EMJS
trampoline.
We cache the function argument counts since when I didn't cache them performance
was negatively affected.
Co-authored-by: T. Wouters <thomas@python.org>
Co-authored-by: Brett Cannon <brett@python.org>
This makes the internal representation in the code generator simpler: there's a list of ops, and a list of macros, and there's no special-casing needed for ops that aren't macros. (There's now special-casing for ops that are also macros, but that's simpler.)
* Rename SAVE_IP to _SET_IP
* Rename EXIT_TRACE to _EXIT_TRACE
* Rename SAVE_CURRENT_IP to _SAVE_CURRENT_IP
* Rename INSERT to _INSERT (This is for Ken Jin's abstract interpreter)
* Rename IS_NONE to _IS_NONE
* Rename JUMP_TO_TOP to _JUMP_TO_TOP
This adds a 16-bit inline cache entry to the conditional branch instructions POP_JUMP_IF_{FALSE,TRUE,NONE,NOT_NONE} and their instrumented variants, which is used to keep track of the branch direction.
Each time we encounter these instructions we shift the cache entry left by one and set the bottom bit to whether we jumped.
Then when it's time to translate such a branch to Tier 2 uops, we use the bit count from the cache entry to decided whether to continue translating the "didn't jump" branch or the "jumped" branch.
The counter is initialized to a pattern of alternating ones and zeros to avoid bias.
The .pyc file magic number is updated. There's a new test, some fixes for existing tests, and a few miscellaneous cleanups.
Fix _thread.start_new_thread() race condition. If a thread is created
during Python finalization, the newly spawned thread now exits
immediately instead of trying to access freed memory and lead to a
crash.
thread_run() calls PyEval_AcquireThread() which checks if the thread
must exit. The problem was that tstate was dereferenced earlier in
_PyThreadState_Bind() which leads to a crash most of the time.
Move _PyThreadState_CheckConsistency() from thread_run() to
_PyThreadState_Bind().
thread_run() of _threadmodule.c now calls
_PyThreadState_CheckConsistency() to check if tstate is a dangling
pointer when Python is built in debug mode.
Rename ceval_gil.c is_tstate_valid() to
_PyThreadState_CheckConsistency() to reuse it in _threadmodule.c.
Symbols of the C API should be prefixed by "Py_" to avoid conflict
with existing names in 3rd party C extensions on "#include <Python.h>".
test.pythoninfo now logs Py_C_RECURSION_LIMIT constant and other
_testcapi and _testinternalcapi constants.
Statistics gathering is now off by default. Use the "-X pystats"
command line option or set the new PYTHONSTATS environment variable
to 1 to turn statistics gathering on at Python startup.
Statistics are no longer dumped at exit if statistics gathering was
off or statistics have been cleared.
Changes:
* Add PYTHONSTATS environment variable.
* sys._stats_dump() now returns False if statistics are not dumped
because they are all equal to zero.
* Add PyConfig._pystats member.
* Add tests on sys functions and on setting PyConfig._pystats to 1.
* Add Include/cpython/pystats.h and Include/internal/pycore_pystats.h
header files.
* Rename '_py_stats' variable to '_Py_stats'.
* Exclude Include/cpython/pystats.h from the Py_LIMITED_API.
* Move pystats.h include from object.h to Python.h.
* Add _Py_StatsOn() and _Py_StatsOff() functions. Remove
'_py_stats_struct' variable from the API: make it static in
specialize.c.
* Document API in Include/pystats.h and Include/cpython/pystats.h.
* Complete pystats documentation in Doc/using/configure.rst.
* Don't write "all zeros" stats: if _stats_off() and _stats_clear()
or _stats_dump() were called.
* _PyEval_Fini() now always call _Py_PrintSpecializationStats() which
does nothing if stats are all zeros.
Co-authored-by: Michael Droettboom <mdboom@gmail.com>
Move the private _PyErr_WriteUnraisableMsg() functions to the
internal C API (pycore_pyerrors.h).
Move write_unraisable_exc() from _testcapi to _testinternalcapi.
Remove <ctype.h> in C files which don't use it; only sre.c and
_decimal.c still use it.
Remove _PY_PORT_CTYPE_UTF8_ISSUE code from pyport.h:
* Code added by commit b5047fd019
in 2004 for MacOSX and FreeBSD.
* Test removed by commit 52ddaefb6b
in 2007, since Python str type now uses locale independent
functions like Py_ISALPHA() and Py_TOLOWER() and the Unicode
database.
Modules/_sre/sre.c replaces _PY_PORT_CTYPE_UTF8_ISSUE with new
functions: sre_isalnum(), sre_tolower(), sre_toupper().
Remove unused includes:
* _localemodule.c: remove <stdio.h>.
* getargs.c: remove <float.h>.
* dynload_win.c: remove <direct.h>, it no longer calls _getcwd()
since commit fb1f68ed7c (in 2001).
Python.h no longer includes <time.h>, <sys/select.h> and <sys/time.h>
standard header files.
* Add <time.h> include to xxsubtype.c.
* Add <sys/time.h> include to posixmodule.c and semaphore.c.
* readline.c includes <sys/select.h> instead of <sys/time.h>.
* resource.c no longer includes <time.h> and <sys/time.h>.
Move prototypes of gethostname(), _getpty() and struct termios from
pyport.h to the C code using them: posixmodule.c, socketmodule.c and
termios.c.
Replace "#ifdef SOLARIS" with "#ifdef __sun".
* Move <ctype.h>, <limits.h> and <stdarg.h> standard includes to
Python.h.
* Move "pystats.h" include from object.h to Python.h.
* Remove redundant "pymem.h" include in objimpl.h and "pyport.h"
include in pymem.h; Python.h already includes them earlier.
* Remove redundant <wchar.h> include in unicodeobject.h; Python.h
already includes it.
* Move _SGI_MP_SOURCE define from Python.h to pyport.h.
* pycore_condvar.h includes explicitly <unistd.h> for the
_POSIX_THREADS macro.
pycore_create_interpreter() now returns a status, rather than
calling Py_FatalError().
* PyInterpreterState_New() now calls Py_ExitStatusException() instead
of calling Py_FatalError() directly.
* Replace Py_FatalError() with PyStatus in init_interpreter() and
_PyObject_InitState().
* _PyErr_SetFromPyStatus() now raises RuntimeError, instead of
ValueError. It can now call PyErr_NoMemory(), raise MemoryError,
if it detects _PyStatus_NO_MEMORY() error message.
Move the private _PyLong_Sign() and _PyLong_NumBits() functions
to the internal C API (pycore_long.h).
Modules/_testcapi/long.c now uses the internal C API.
This adds a new header that provides atomic operations on common data
types. The intention is that this will be exposed through Python.h,
although that is not the case yet. The only immediate use is in
the test file.
Co-authored-by: Sam Gross <colesbury@gmail.com>
Python built with "configure --with-trace-refs" (tracing references)
is now ABI compatible with Python release build and debug build.
Moreover, it now also supports the Limited API.
Change Py_TRACE_REFS build:
* Remove _PyObject_EXTRA_INIT macro.
* The PyObject structure no longer has two extra members (_ob_prev
and _ob_next).
* Use a hash table (_Py_hashtable_t) to trace references (all
objects): PyInterpreterState.object_state.refchain.
* Py_TRACE_REFS build is now ABI compatible with release build and
debug build.
* Limited C API extensions can now be built with Py_TRACE_REFS:
xxlimited, xxlimited_35, _testclinic_limited.
* No longer rename PyModule_Create2() and PyModule_FromDefAndSpec2()
functions to PyModule_Create2TraceRefs() and
PyModule_FromDefAndSpec2TraceRefs().
* _Py_PrintReferenceAddresses() is now called before
finalize_interp_delete() which deletes the refchain hash table.
* test_tracemalloc find_trace() now also filters by size to ignore
the memory allocated by _PyRefchain_Trace().
Test changes for Py_TRACE_REFS:
* Add test.support.Py_TRACE_REFS constant.
* Add test_sys.test_getobjects() to test sys.getobjects() function.
* test_exceptions skips test_recursion_normalizing_with_no_memory()
and test_memory_error_in_PyErr_PrintEx() if Python is built with
Py_TRACE_REFS.
* test_repl skips test_no_memory().
* test_capi skisp test_set_nomemory().
Remove _PyErr_ChainExceptions(), _PyErr_ChainExceptions1() and
_PyErr_SetFromPyStatus() functions from the public C API.
* Move the private _PyErr_ChainExceptions() and
_PyErr_ChainExceptions1() function to the internal C API
(pycore_pyerrors.h).
* Move the private _PyErr_SetFromPyStatus() to the internal C API
(pycore_initconfig.h).
* No longer export the _PyErr_ChainExceptions() function.
* Move run_in_subinterp_with_config() from _testcapi to
_testinternalcapi.
There is no need to export the _Py_ForgetReference() function of the
Py_TRACE_REFS build. It's not used by shared extensions. Enhance also
its comment.
Move PyUnstable_ExecutableKinds and associated macros from the
internal C API to the public C API.
Rename constants: replace "PY_" prefix with "PyUnstable_" prefix.
Also remove NOP instructions.
The "stubs" are not optimized in this fashion (their SAVE_IP should always be preserved since it's where to jump next, and they don't contain NOPs by their nature).
Move the following private API to the internal C API (pycore_long.h):
* _PyLong_Copy()
* _PyLong_FromDigits()
* _PyLong_New()
No longer export most of these functions.
The remove private _PyGILState_GetInterpreterStateUnsafe() function
from the public C API: move it the internal C API (pycore_pystate.h).
No longer export the function.
The remove private _Py_UniversalNewlineFgetsWithSize() function from
the public C API: move it the internal C API (pycore_fileutils.h).
No longer export the function.
Remove these private functions from the public C API:
* _PyRun_AnyFileObject()
* _PyRun_InteractiveLoopObject()
* _PyRun_SimpleFileObject()
* _Py_SourceAsString()
Move them to the internal C API: add a new pycore_pythonrun.h header
file. No longer export these functions.
Remove the private _Py_Identifier type and related private functions
from the public C API:
* _PyObject_GetAttrId()
* _PyObject_LookupSpecialId()
* _PyObject_SetAttrId()
* _PyType_LookupId()
* _Py_IDENTIFIER()
* _Py_static_string()
* _Py_static_string_init()
Move them to the internal C API: add a new pycore_identifier.h header
file. No longer export these functions.
* Rename _PyUnstable_GetUnaryIntrinsicName() to
PyUnstable_GetUnaryIntrinsicName()
* Rename _PyUnstable_GetBinaryIntrinsicName()
to PyUnstable_GetBinaryIntrinsicName().
Move these private functions to the internal C API
(pycore_abstract.h):
* _Py_convert_optional_to_ssize_t()
* _PyNumber_Index()
Argument Clinic now emits #include "pycore_abstract.h" when these
functions are used.
The parser of the c-analyzer tool now uses a list of files which use
the limited C API, rather than a list of files using the internal C
API.
Move the private _PyLong converter functions to the internal C API
* _PyLong_FileDescriptor_Converter(): moved to pycore_fileutils.h
* _PyLong_Size_t_Converter(): moved to pycore_long.h
Argument Clinic now emits includes for pycore_fileutils.h and
pycore_long.h when these functions are used.
Move these private functions to the internal C API (pycore_long.h):
* _PyLong_UnsignedInt_Converter()
* _PyLong_UnsignedLongLong_Converter()
* _PyLong_UnsignedLong_Converter()
* _PyLong_UnsignedShort_Converter()
Argument Clinic now emits #include "pycore_long.h" when these
functions are used.