Instead of using `GO_TO_INSTRUCTION(CALL_PY_EXACT_ARGS)` we just add the macro elements of the latter to the macro for the former. This requires lengthening the uops array in struct opcode_macro_expansion. (It also required changes to stacking.py that were merged already.)
I was comparing the last preceding poke with the *last* peek,
rather than the *first* peek.
Unfortunately this bug obscured another bug:
When the last preceding poke is UNUSED, the first peek disappears,
leaving the variable unassigned. This is how I fixed it:
- Rename CopyEffect to CopyItem.
- Change CopyItem to contain StackItems instead of StackEffects.
- Update those StackItems when adjusting the manager higher or lower.
- Assert that those StackItems' offsets are equivalent.
- Other clever things.
---------
Co-authored-by: Irit Katriel <1055913+iritkatriel@users.noreply.github.com>
* Add missing includes.
* Remove unused includes.
* Update old include/symbol names to newer names.
* Mention at least one included symbol.
* Sort includes.
* Update Tools/cases_generator/generate_cases.py used to generated
pycore_opcode_metadata.h.
* Update Parser/asdl_c.py used to generate pycore_ast.h.
* Cleanup also includes in _testcapimodule.c and _testinternalcapi.c.
* pycore_intrinsics.h does nothing if included twice
(add #ifndef and #define).
* Update Tools/cases_generator/generate_cases.py to generate the
Py_BUILD_CORE test.
* _bz2, _lzma, _opcode and zlib extensions now define the
Py_BUILD_CORE_MODULE macro to use internal headers
(pycore_code.h, pycore_intrinsics.h and pycore_blocks_output_buffer.h).
This finishes the work begun in gh-107760. When, while projecting a superblock, we encounter a call to a short, simple function, the superblock will now enter the function using `_PUSH_FRAME`, continue through it, and leave it using `_POP_FRAME`, and then continue through the original code. Multiple frame pushes and pops are even possible. It is also possible to stop appending to the superblock in the middle of a called function, when running out of space or encountering an unsupported bytecode.
* Split `CALL_PY_EXACT_ARGS` into uops
This is only the first step for doing `CALL` in Tier 2.
The next step involves tracing into the called code object and back.
After that we'll have to do the remaining `CALL` specialization.
Finally we'll have to deal with `KW_NAMES`.
Note: this moves setting `frame->return_offset` directly in front of
`DISPATCH_INLINED()`, to make it easier to move it into `_PUSH_FRAME`.
- Generalize the syntax for the type of a stack effect to allow a trailing `*`,
so we can declare something as e.g. `PyCodeObject *`.
- When generating assignments for stack effects,
the type of the value on the stack should be the default (i.e., `PyObject *`)
even when the variable copied to/from it has a different type,
so that an appropriate cast is generated
However, not when the variable is an array --
then the type is taken from the variable (as it is always `PyObject **`).
This fixes two tiny defects in analysis.py that I didn't catch on time in #107564:
- `get_var_names` in `check_macro_consistency` should skip `UNUSED` names.
- Fix an occurrence of `is UNUSED` (should be `==`).
Introducing a new file, stacking.py, that takes over several responsibilities related to symbolic evaluation of push/pop operations, with more generality.
This mostly extracts a whole bunch of stuff out of generate_cases.py into separate files, but there are a few other things going on here.
- analysis.py: `Analyzer` etc.
- instructions.py: `Instruction` etc.
- flags.py: `InstructionFlags`, `variable_used`, `variable_used_unspecialized`
- formatting.py: `Formatter` etc.
- Rename parser.py to parsing.py, to avoid conflict with stdlib parser.py
- Blackify most things
- Fix most mypy errors
- Remove output filenames from Generator state, add them to `write_instructions()` etc.
- Fix unit tests
This restores a corner case: when the generator is run with working directory set to Tools/cases_generator, the source filenames listed in the generated provenance header should be relative to the repo root directory.
By turning `assert(kwnames == NULL)` into a macro that is not in the "forbidden" list, many instructions that formerly were skipped because they contained such an assert (but no other mention of `kwnames`) are now supported in Tier 2. This covers 10 instructions in total (all specializations of `CALL` that invoke some C code):
- `CALL_NO_KW_TYPE_1`
- `CALL_NO_KW_STR_1`
- `CALL_NO_KW_TUPLE_1`
- `CALL_NO_KW_BUILTIN_O`
- `CALL_NO_KW_BUILTIN_FAST`
- `CALL_NO_KW_LEN`
- `CALL_NO_KW_ISINSTANCE`
- `CALL_NO_KW_METHOD_DESCRIPTOR_O`
- `CALL_NO_KW_METHOD_DESCRIPTOR_NOARGS`
- `CALL_NO_KW_METHOD_DESCRIPTOR_FAST`
This moves EXIT_TRACE, SAVE_IP, JUMP_TO_TOP, and
_POP_JUMP_IF_{FALSE,TRUE} from ceval.c to bytecodes.c.
They are no less special than before, but this way
they are discoverable o the copy-and-patch tooling.
During superblock generation, a JUMP_BACKWARD instruction is translated to either a JUMP_TO_TOP micro-op (when the target of the jump is exactly the beginning of the superblock, closing the loop), or a SAVE_IP + EXIT_TRACE pair, when the jump goes elsewhere.
The new JUMP_TO_TOP instruction includes a CHECK_EVAL_BREAKER() call, so a closed loop can still be interrupted.
- Hand-written uops JUMP_IF_{TRUE,FALSE}.
These peek at the top of the stack.
The jump target (in superblock space) is absolute.
- Hand-written translation for POP_JUMP_IF_{TRUE,FALSE},
assuming the jump is unlikely.
Once we implement jump-likelihood profiling,
we can implement the jump-unlikely case (in another PR).
- Tests (including some test cleanup).
- Improvements to len(ex) and ex[i] to expose the whole trace.
This adds several of unspecialized opcodes to superblocks:
TO_BOOL, BINARY_SUBSCR, STORE_SUBSCR,
UNPACK_SEQUENCE, LOAD_GLOBAL, LOAD_ATTR,
COMPARE_OP, BINARY_OP.
While we may not want that eventually, for now this helps finding bugs.
There is a rudimentary test checking for UNPACK_SEQUENCE.
Once we're ready to undo this, that would be simple:
just replace the call to variable_used_unspecialized
with a call to variable_used (as shown in a comment).
Or add individual opcdes to FORBIDDEN_NAMES_IN_UOPS.
Instead of special-casing specific instructions,
we add a few more special values to the 'size' field of expansions,
so in the future we can automatically handle
additional super-instructions in the generator.
- Tweak uops debugging output
- Fix the bug from gh-106290
- Rename `SET_IP` to `SAVE_IP` (per https://github.com/faster-cpython/ideas/issues/558)
- Add a `SAVE_IP` uop at the start of the trace (ditto)
- Allow `unbound_local_error`; this gives us uops for `LOAD_FAST_CHECK`, `LOAD_CLOSURE`, and `DELETE_FAST`
- Longer traces
- Support `STORE_FAST_LOAD_FAST`, `STORE_FAST_STORE_FAST`
- Add deps on pycore_uops.h to Makefile(.pre.in)
This produces longer traces (superblocks?).
Also improved debug output (uop names are now printed instead of numeric opcodes). This would be simpler if the numeric opcode values were generated by generate_cases.py, but that's another project.
Refactored some code in generate_cases.py so the essential algorithm for cache effects is only run once. (Deciding which effects are used and what the total cache size is, regardless of what's used.)
Added a new, experimental, tracing optimizer and interpreter (a.k.a. "tier 2"). This currently pessimizes, so don't use yet -- this is infrastructure so we can experiment with optimizing passes. To enable it, pass ``-Xuops`` or set ``PYTHONUOPS=1``. To get debug output, set ``PYTHONUOPSDEBUG=N`` where ``N`` is a debug level (0-4, where 0 is no debug output and 4 is excessively verbose).
All of this code is likely to change dramatically before the 3.13 feature freeze. But this is a first step.