This is a small performance improvement, especially for one or two hot
places such as _handle_fromlist() that are called a lot and the
.format() method was being used just to join two strings with a dot.
Otherwise it is merely a readability improvement.
We keep `_ERR_MSG` and `_ERR_MSG_PREFIX` as those may be used elsewhere for canonical looking error messages.
Frozen modules must be added to several files in order to work properly. Before this change this had to be done manually. Here we add a tool to generate the relevant lines in those files instead. This helps us avoid mistakes and omissions.
https://bugs.python.org/issue45019
Implements a two steps check in `importlib._bootstrap._find_and_load()` to avoid locking when the module has been already imported and it's ready.
---
Using `importlib.__import__()`, after this, does show a big difference:
Before:
```
$ ./python -c 'import timeit; print(timeit.timeit("__import__(\"timeit\")", setup="from importlib import __import__"))'
15.92248619502061
```
After:
```
$ ./python -c 'import timeit; print(timeit.timeit("__import__(\"timeit\")", setup="from importlib import __import__"))'
1.206068897008663
```
---
This PR is part of PEP 657 and augments the compiler to emit ending
line numbers as well as starting and ending columns from the AST
into compiled code objects. This allows bytecodes to be correlated
to the exact source code ranges that generated them.
This information is made available through the following public APIs:
* The `co_positions` method on code objects.
* The C API function `PyCode_Addr2Location`.
Co-authored-by: Batuhan Taskaya <isidentical@gmail.com>
Co-authored-by: Ammar Askar <ammar@ammaraskar.com>
Currently, if an arg value escapes (into the closure for an inner function) we end up allocating two indices in the fast locals even though only one gets used. Additionally, using the lower index would be better in some cases, such as with no-arg `super()`. To address this, we update the compiler to fix the offsets so each variable only gets one "fast local". As a consequence, now some cell offsets are interspersed with the locals (only when an arg escapes to an inner function).
https://bugs.python.org/issue43693
This was reverted in GH-26596 (commit 6d518bb) due to some bad memory accesses.
* Add the MAKE_CELL opcode. (gh-26396)
The memory accesses have been fixed.
https://bugs.python.org/issue43693
This moves logic out of the frame initialization code and into the compiler and eval loop. Doing so simplifies the runtime code and allows us to optimize it better.
https://bugs.python.org/issue43693
These were reverted in gh-26530 (commit 17c4edc) due to refleaks.
* 2c1e258 - Compute deref offsets in compiler (gh-25152)
* b2bf2bc - Add new internal code objects fields: co_fastlocalnames and co_fastlocalkinds. (gh-26388)
This change fixes the refleaks.
https://bugs.python.org/issue43693
* Revert "bpo-43693: Compute deref offsets in compiler (gh-25152)"
This reverts commit b2bf2bc1ec.
* Revert "bpo-43693: Add new internal code objects fields: co_fastlocalnames and co_fastlocalkinds. (gh-26388)"
This reverts commit 2c1e2583fd.
These two commits are breaking the refleak buildbots.
Merges locals and cells into a single array.
Saves a pointer in the interpreter and means that we don't need the LOAD_CLOSURE opcode any more
https://bugs.python.org/issue43693
A number of places in the code base (notably ceval.c and frameobject.c) rely on mapping variable names to indices in the frame "locals plus" array (AKA fast locals), and thus opargs. Currently the compiler indirectly encodes that information on the code object as the tuples co_varnames, co_cellvars, and co_freevars. At runtime the dependent code must calculate the proper mapping from those, which isn't ideal and impacts performance-sensitive sections. This is something we can easily address in the compiler instead.
This change addresses the situation by replacing internal use of co_varnames, etc. with a single combined tuple of names in locals-plus order, along with a minimal array mapping each to its kind (local vs. cell vs. free). These two new PyCodeObject fields, co_fastlocalnames and co_fastllocalkinds, are not exposed to Python code for now, but co_varnames, etc. are still available with the same values as before (though computed lazily).
Aside from the (mild) performance impact, there are a number of other benefits:
* there's now a clear, direct relationship between locals-plus and variables
* code that relies on the locals-plus-to-name mapping is simpler
* marshaled code objects are smaller and serialize/de-serialize faster
Also note that we can take this approach further by expanding the possible values in co_fastlocalkinds to include specific argument types (e.g. positional-only, kwargs). Doing so would allow further speed-ups in _PyEval_MakeFrameVector(), which is where args get unpacked into the locals-plus array. It would also allow us to shrink marshaled code objects even further.
https://bugs.python.org/issue43693
"Zero cost" exception handling.
* Uses a lookup table to determine how to handle exceptions.
* Removes SETUP_FINALLY and POP_TOP block instructions, eliminating (most of) the runtime overhead of try statements.
* Reduces the size of the frame object by about 60%.
* Add length parameter to PyLineTable_InitAddressRange and doen't use sentinel values at end of table. Makes the line number table more robust.
* Update PyCodeAddressRange to match PEP 626.
* Use instruction offset, rather than bytecode offset. Streamlines interpreter dispatch a bit, and removes most EXTENDED_ARGs for jumps.
* Change some uses of PyCode_Addr2Line to PyFrame_GetLineNumber
* Mark bytecodes at end of try-except as artificial.
* Make sure that the CFG is consistent throughout optimiization.
* Extend line-number propagation logic so that implicit returns after 'try-except' or 'with' have the correct line numbers.
* Update importlib
* Delete jump instructions that bypass empty blocks
* Add news entry
* Explicitly check for unconditional jump opcodes
Using the is_jump function results in the inclusion of instructions like
returns for which this optimization is not really valid. So, instead
explicitly check that the instruction is an unconditional jump.
* Handle conditional jumps, delete jumps gracefully
* Ensure b_nofallthrough and b_reachable are valid
* Add test for redundant jumps
* Regenerate importlib.h and edit Misc/ACKS
* Fix bad whitespace