Python built with "configure --with-trace-refs" (tracing references)
is now ABI compatible with Python release build and debug build.
Moreover, it now also supports the Limited API.
Change Py_TRACE_REFS build:
* Remove _PyObject_EXTRA_INIT macro.
* The PyObject structure no longer has two extra members (_ob_prev
and _ob_next).
* Use a hash table (_Py_hashtable_t) to trace references (all
objects): PyInterpreterState.object_state.refchain.
* Py_TRACE_REFS build is now ABI compatible with release build and
debug build.
* Limited C API extensions can now be built with Py_TRACE_REFS:
xxlimited, xxlimited_35, _testclinic_limited.
* No longer rename PyModule_Create2() and PyModule_FromDefAndSpec2()
functions to PyModule_Create2TraceRefs() and
PyModule_FromDefAndSpec2TraceRefs().
* _Py_PrintReferenceAddresses() is now called before
finalize_interp_delete() which deletes the refchain hash table.
* test_tracemalloc find_trace() now also filters by size to ignore
the memory allocated by _PyRefchain_Trace().
Test changes for Py_TRACE_REFS:
* Add test.support.Py_TRACE_REFS constant.
* Add test_sys.test_getobjects() to test sys.getobjects() function.
* test_exceptions skips test_recursion_normalizing_with_no_memory()
and test_memory_error_in_PyErr_PrintEx() if Python is built with
Py_TRACE_REFS.
* test_repl skips test_no_memory().
* test_capi skisp test_set_nomemory().
Replace _PyDict_GetItemStringWithError() calls with
PyDict_GetItemStringRef() which returns a strong reference to the
item.
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
Remove private _PyDict_GetItemStringWithError() function of the
public C API: the new PyDict_GetItemStringRef() can be used instead.
* Move private _PyDict_GetItemStringWithError() to the internal C API.
* _testcapi get_code_extra_index() uses PyDict_GetItemStringRef().
Avoid using private functions in _testcapi which tests the public C
API.
PyTuple_SET_ITEM() and PyList_SET_ITEM() now check the index argument
with an assertion if Python is built in debug mode or is built with
assertions.
* list_extend() and _PyList_AppendTakeRef() now set the list size
before calling PyList_SET_ITEM().
* PyStructSequence_GetItem() and PyStructSequence_SetItem() now check
the index argument: must be lesser than REAL_SIZE(op).
* PyStructSequence_GET_ITEM() and PyStructSequence_SET_ITEM() are now
aliases to PyStructSequence_GetItem() and
PyStructSequence_SetItem().
his involves moving tp_dict, tp_bases, and tp_mro to PyInterpreterState, in the same way we did for tp_subclasses. Those three fields are effectively const for builtin static types (unlike tp_subclasses). In theory we only need to make their values immortal, along with their contents. However, that isn't such a simple proposition. (See gh-103823.) In the meantime the simplest solution is to move the fields into the interpreter.
One alternative is to statically allocate the values, but that's its own can of worms.
This change has two small parts:
1. a follow-up to gh-103940 with one case I missed
2. adding a missing return that I noticed while working on related code
Moving it valuable with a per-interpreter GIL. However, it is also useful without one, since it allows us to identify refleaks within a single interpreter or where references are escaping an interpreter. This becomes more important as we move the obmalloc state to PyInterpreterState.
https://github.com/python/cpython/issues/102304
This is the first of several precursors to storing tp_subclasses (and tp_weaklist) on the interpreter state for static builtin types.
We do the following:
* add `_PyStaticType_InitBuiltin()`
* add `_Py_TPFLAGS_STATIC_BUILTIN`
* set it on all static builtin types in `_PyStaticType_InitBuiltin()`
* shuffle some code around to be able to use _PyStaticType_InitBuiltin()
* rename `_PyStructSequence_InitType()` to `_PyStructSequence_InitBuiltinWithFlags()`
* add `_PyStructSequence_InitBuiltin()`.
We're no longer using _Py_IDENTIFIER() (or _Py_static_string()) in any core CPython code. It is still used in a number of non-builtin stdlib modules.
The replacement is: PyUnicodeObject (not pointer) fields under _PyRuntimeState, statically initialized as part of _PyRuntime. A new _Py_GET_GLOBAL_IDENTIFIER() macro facilitates lookup of the fields (along with _Py_GET_GLOBAL_STRING() for non-identifier strings).
https://bugs.python.org/issue46541#msg411799 explains the rationale for this change.
The core of the change is in:
* (new) Include/internal/pycore_global_strings.h - the declarations for the global strings, along with the macros
* Include/internal/pycore_runtime_init.h - added the static initializers for the global strings
* Include/internal/pycore_global_objects.h - where the struct in pycore_global_strings.h is hooked into _PyRuntimeState
* Tools/scripts/generate_global_objects.py - added generation of the global string declarations and static initializers
I've also added a --check flag to generate_global_objects.py (along with make check-global-objects) to check for unused global strings. That check is added to the PR CI config.
The remainder of this change updates the core code to use _Py_GET_GLOBAL_IDENTIFIER() instead of _Py_IDENTIFIER() and the related _Py*Id functions (likewise for _Py_GET_GLOBAL_STRING() instead of _Py_static_string()). This includes adding a few functions where there wasn't already an alternative to _Py*Id(), replacing the _Py_Identifier * parameter with PyObject *.
The following are not changed (yet):
* stop using _Py_IDENTIFIER() in the stdlib modules
* (maybe) get rid of _Py_IDENTIFIER(), etc. entirely -- this may not be doable as at least one package on PyPI using this (private) API
* (maybe) intern the strings during runtime init
https://bugs.python.org/issue46541
The _curses module now creates its ncurses_version type as a heap
type using PyStructSequence_NewType(), rather than using a static
type.
* Move _PyStructSequence_FiniType() definition to pycore_structseq.h.
* test.pythoninfo: log curses.ncurses_version.
Add _PyStructSequence_FiniType() and _PyStaticType_Dealloc()
functions to finalize a structseq static type in Py_Finalize().
Currrently, these functions do nothing if Python is built in release
mode.
Clear static types:
* AsyncGenHooksType: sys.set_asyncgen_hooks()
* FlagsType: sys.flags
* FloatInfoType: sys.float_info
* Hash_InfoType: sys.hash_info
* Int_InfoType: sys.int_info
* ThreadInfoType: sys.thread_info
* UnraisableHookArgsType: sys.unraisablehook
* VersionInfoType: sys.version
* WindowsVersionType: sys.getwindowsversion()
This change is strictly renames and moving code around. It helps in the following ways:
* ensures type-related init functions focus strictly on one of the three aspects (state, objects, types)
* passes in PyInterpreterState * to all those functions, simplifying work on moving types/objects/state to the interpreter
* consistent naming conventions help make what's going on more clear
* keeping API related to a type in the corresponding header file makes it more obvious where to look for it
https://bugs.python.org/issue46008
Add a new Py_TPFLAGS_DISALLOW_INSTANTIATION type flag to disallow
creating type instances: set tp_new to NULL and don't create the
"__new__" key in the type dictionary.
The flag is set automatically on static types if tp_base is NULL or
&PyBaseObject_Type and tp_new is NULL.
Use the flag on the following types:
* _curses.ncurses_version type
* _curses_panel.panel
* _tkinter.Tcl_Obj
* _tkinter.tkapp
* _tkinter.tktimertoken
* _xxsubinterpretersmodule.ChannelID
* sys.flags type
* sys.getwindowsversion() type
* sys.version_info type
Update MyStr example in the C API documentation to use
Py_TPFLAGS_DISALLOW_INSTANTIATION.
Add _PyStructSequence_InitType() function to create a structseq type
with the Py_TPFLAGS_DISALLOW_INSTANTIATION flag set.
type_new() calls _PyType_CheckConsistency() at exit.
Reorganize pycore_interp_init() to initialize singletons before the
the first PyType_Ready() call. Fix an issue when Python is configured
using --without-doc-strings.
No longer use deprecated aliases to functions:
* Replace PyMem_MALLOC() with PyMem_Malloc()
* Replace PyMem_REALLOC() with PyMem_Realloc()
* Replace PyMem_FREE() with PyMem_Free()
* Replace PyMem_Del() with PyMem_Free()
* Replace PyMem_DEL() with PyMem_Free()
Modify also the PyMem_DEL() macro to use directly PyMem_Free().
These functions are considered not safe because they suppress all internal errors
and can return wrong result. PyDict_GetItemString and _PyDict_GetItemId can
also silence current exception in rare cases.
Remove no longer used _PyDict_GetItemId.
Add _PyDict_ContainsId and rename _PyDict_Contains into
_PyDict_Contains_KnownHash.
Use _PyType_HasFeature() in the _io module and in structseq
implementation. Replace PyType_HasFeature() opaque function call with
_PyType_HasFeature() inlined function.
In ArgumentClinic, value "NULL" should now be used only for unrepresentable default values
(like in the optional third parameter of getattr). "None" should be used if None is accepted
as argument and passing None has the same effect as not passing the argument at all.
No longer limit repr(structseq) to 512 bytes. Use _PyUnicodeWriter
for better performance and to write directly Unicode rather than
encoding repr() value to UTF-8 and then decoding from UTF-8.
Replace strncpy() with memcpy() in structseq_repr() to fix the
following compiler warning:
Objects/structseq.c:187:5: warning: 'strncpy' specified bound depends on the length of the source argument [-Wstringop-overflow=]
strncpy(pbuf, typ->tp_name, len);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Objects/structseq.c:185:11: note: length computed here
len = strlen(typ->tp_name) > TYPE_MAXSIZE ? TYPE_MAXSIZE :
The function writes the terminating NUL byte later.
PyTuple_Pack can fail and return NULL. If this happens, then PyType_FromSpecWithBases will incorrectly create a new type without bases. Also, it will crash on the Py_DECREF that follows. Also free members and type in error conditions.
METH_NOARGS functions need only a single argument but they are cast
into a PyCFunction, which takes two arguments. This triggers an
invalid function cast warning in gcc8 due to the argument mismatch.
Fix this by adding a dummy unused argument.