* Defer error handling for wrong number of arguments to the
unpack_iterable() function. Cuts the code size almost in half.
* Replace function calls to PyList_Size() and PyTuple_Size() with
their smaller and faster macro counterparts.
* Move the constant structure references outside of the inner loops.
(Contributed by Andrew I MacIntyre.)
disables opcode prediction when dynamic execution
profiling is in effect, so the profiling counters at
the top of the main interpreter loop in eval_frame()
are updated for each opcode.
Simplified version of Neal Norwitz's patch which adds gotos for
opcodes that set "why". This skips a number of tests where the
outcome of the tests are known in advance.
comments about why both calls to cyclic gc here can cause problems.
I'll backport to 2.3 maint. Since the calls were introduced in 2.3,
that will be the end of it.
and left shifts. (Thanks to Kalle Svensson for SF patch 849227.)
This addresses most of the remaining semantic changes promised by
PEP 237, except for repr() of a long, which still shows the trailing
'L'. The PEP appears to promise warnings for operations that
changed semantics compared to Python 2.3, but this is not
implemented; we've suffered through enough warnings related to
hex/oct literals and I think it's best to be silent now.
* Install the unittests, docs, newsitem, include file, and makefile update.
* Exercise the new functions whereever sets.py was being used.
Includes the docs for libfuncs.tex. Separate docs for the types are
forthcoming.
The embed2.diff patch solves the user's problem by exporting the missing
symbols from the Python core so Python can be embedded in another Cygwin
application (well, at lest vim).
Cygwin's pthread_sigmask() implementation appears to be buggy. This
patch works around this problem by using sigprocmask() instead.
This patch is implemented in a general way so it could be used by other
platforms too. If this approach is deemed too risky, then I can work up
a patch that just hacks Python/thread_pthread.h for Cygwin.
Note that I tested this patch against 2.3c1 under Red Hat Linux 8.0 too.
[snip]
And finally, I need someone to regenerate pyconfig.h.in and configure
with the same versions of the autotools that are normally used by
Python.
Neal kindly regenerated pyconfig.h.in and configure for me.
If the initial import of warnings fails, clear the error. When the module
is actually needed, if the original import failed, see if it has managed
to find its way to sys.modules yet and if so, remember it.
Fixes for three related bugs, including errors that caused a script to
be ignored without printing an error message. The key problem was a bad
interaction between syntax warnings and syntax errors. If an
exception was already set when a warning was issued, the warning could
clobber the exception.
The PyErr_Occurred() check in issue_warning() isn't entirely
satisfying (the caller should know whether there was already an
error), but a better solution isn't immediately obvious.
Bug fix candidate.
behavior, creating many threads very quickly. A long debugging session
revealed that the Windows implementation of PyThread_start_new_thread()
was choked with "laziness" errors:
1. It checked MS _beginthread() for a failure return, but when that
happened it returned heap trash as the function result, instead of
an id of -1 (the proper error-return value).
2. It didn't consider that the Win32 CreateSemaphore() can fail.
3. When creating a great many threads very quickly, it's quite possible
that any particular bootstrap call can take virtually any amount of
time to return. But the code waited for a maximum of 5 seconds, and
didn't check to see whether the semaphore it was waiting for got
signaled. If it in fact timed out, the function could again return
heap trash as the function result. This is actually what confused
the test program, as the heap trash usually turned out to be 0, and
then multiple threads all got id 0 simultaneously, confusing the
hell out of threading.py's _active dict (mapping id to thread
object). A variety of baffling behaviors followed from that.
WRT #1 and #2, error returns are checked now, and "thread.error: can't
start new thread" gets raised now if a new thread (or new semaphore)
can't be created. WRT #3, we now wait for the semaphore without a
timeout.
Also removed useless local vrbls, folded long lines, and changed callobj
to a stack auto (it was going thru malloc/free instead, for no discernible
reason).
Bugfix candidate.
A new API (only accessible from C) to interrupt a thread by sending it
an exception. This is not always effective, but might help some people.
Requested by Just van Rossum and Alex Martelli. It is intentional
that you have to write your own C extension to call it from Python.
Docs will have to wait.
It depended on the previously removed basic block checker to
prevent a jump into the middle of the transformed block.
Clears SF 757818: tuple assignment -- SystemError: unknown opcode
The compiler was reseting the list comprehension tmpname counter for each function, but the symtable was using the same counter for the entire module. Repair by move tmpname into the symtable entry.
Bugfix candidate.
[ 708901 ] Lineno calculation sometimes broken
A one line patch to compile.c and a rather-more-than-one-line patch
to test_dis. Hey ho.
Possibly a backport candidate -- tho' lnotab is less used in 2.2...
* Can now test for basic blocks.
* Optimize inverted comparisions.
* Optimize unary_not followed by a conditional jump.
* Added a new opcode, NOP, to keep code size constant.
* Applied NOP to previous transformations where appropriate.
Note, the NOP would not be necessary if other functions were
added to re-target jump addresses and update the co_lnotab mapping.
That would yield slightly faster and cleaner bytecode at the
expense of optimizer simplicity and of keeping it decoupled
from the line-numbering structure.
particular leaving the traceback object (and everything reachable
from it) alive throughout shutdown. The patch is mostly from Guido.
Bugfix candidate.