the __long__ slot is allowed to return either int or long, but the behaviour of
float objects should not change between 2.5 and 2.6.
Reviewed by Benjamin Peterson
long raise ValueError instead of returning 0. Also, change the error
message for conversion of an infinity to an integer, replacing 'long' by
'integer', so that it's appropriate for both long(float('inf')) and
int(float('inf')).
round included:
* Revert round to its 2.6 behavior (half away from 0).
* Because round, floor, and ceil always return float again, it's no
longer necessary to have them delegate to __xxx___, so I've ripped
that out of their implementations and the Real ABC. This also helps
in implementing types that work in both 2.6 and 3.0: you return int
from the __xxx__ methods, and let it get enabled by the version
upgrade.
* Make pow(-1, .5) raise a ValueError again.
the complex_pow part), r56649, r56652, r56715, r57296, r57302, r57359, r57361,
r57372, r57738, r57739, r58017, r58039, r58040, and r59390, and new
documentation. The only significant difference is that round(x) returns a float
to preserve backward-compatibility. See http://bugs.python.org/issue1689.
* unified the way intobject, longobject and mystrtoul handle
values around -sys.maxint-1.
* in general, trying to entierely avoid overflows in any computation
involving signed ints or longs is extremely involved. Fixed a few
simple cases where a compiler might be too clever (but that's all
guesswork).
* more overflow checks against bad data in marshal.c.
* 2.5 specific: fixed a number of places that were still confusing int
and Py_ssize_t. Some of them could potentially have caused
"real-world" breakage.
* list.pop(x): fixing overflow issues on x was messy. I just reverted
to PyArg_ParseTuple("n"), which does the right thing. (An obscure
test was trying to give a Decimal to list.pop()... doesn't make
sense any more IMHO)
* trying to write a few tests...
When an integer is compared to a float now, the int isn't coerced to float.
This avoids spurious overflow exceptions and insane results. This should
compute correct results, without raising spurious exceptions, in all cases
now -- although I expect that what happens when an int/long is compared to
a NaN is still a platform accident.
Note that we had potential problems here even with "short" ints, on boxes
where sizeof(long)==8. There's #ifdef'ed code here to handle that, but
I can't test it as intended. I tested it by changing the #ifdef to
trigger on my 32-bit box instead.
I suppose this is a bugfix candidate, but I won't backport it. It's
long-winded (for speed) and messy (because the problem is messy). Note
that this also depends on a previous 2.4 patch that introduced
_Py_SwappedOp[] as an extern.
huge. On older Linux systems, the C library's strtod() apparently
gives up before seeing the end of the string when it sees so many
digits that it thinks the result must be Infinity. (It is wrong, BTW
-- there could be an "e-10000" hiding behind 10,000 digits.) The
shorter shuge still tests what it's testing, without relying on
strtod() doing a super job.
test was written. So boosted the number of "digits" this generates, and
also beefed up the "* / divmod" test to tickle numbers big enough to
trigger the Karatsuba algorithm. It takes about 2 seconds now on my box.
imports e.g. test_support must do so using an absolute package name
such as "import test.test_support" or "from test import test_support".
This also updates the README in Lib/test, and gets rid of the
duplicate data dirctory in Lib/test/data (replaced by
Lib/email/test/data).
Now Tim and Jack can have at it. :)
getting Infs, NaNs, or nonsense in 2.1 and before; in yesterday's CVS we
were getting OverflowError; but these functions always make good sense
for positive arguments, no matter how large).
"/" and "//", and doesn't really care what they *mean*, just that both
are tried (and that, whatever they mean, they act similarly for int and
long arguments).
the fiddling is simply due to that no caller of PyLong_AsDouble ever
checked for failure (so that's fixing old bugs). PyLong_AsDouble is much
faster for big inputs now too, but that's more of a happy consequence
than a design goal.
and replaces them with a new API verify(). As a result the regression
suite will also perform its tests in optimization mode.
Written by Marc-Andre Lemburg. Copyright assigned to Guido van Rossum.