Changes to the function version cache:
- In addition to the function object, also store the code object,
and allow the latter to be retrieved even if the function has been evicted.
- Stop assigning new function versions after a critical attribute (e.g. `__code__`)
has been modified; the version is permanently reset to zero in this case.
- Changes to `__annotations__` are no longer considered critical. (This fixes gh-109998.)
Changes to the Tier 2 optimization machinery:
- If we cannot map a function version to a function, but it is still mapped to a code object,
we continue projecting the trace.
The operand of the `_PUSH_FRAME` and `_POP_FRAME` opcodes can be either NULL,
a function object, or a code object with the lowest bit set.
This allows us to trace through code that calls an ephemeral function,
i.e., a function that may not be alive when we are constructing the executor,
e.g. a generator expression or certain nested functions.
We will lose globals removal inside such functions,
but we can still do other peephole operations
(and even possibly [call inlining](https://github.com/python/cpython/pull/116290),
if we decide to do it), which only need the code object.
As before, if we cannot retrieve the code object from the cache, we stop projecting.
I added it quite a while ago as a strategy for managing interpreter lifetimes relative to the PEP 554 (now 734) implementation. Relatively recently I refactored that implementation to no longer rely on InterpreterID objects. Thus now I'm removing it.
Add Py_GetConstant() and Py_GetConstantBorrowed() functions.
In the limited C API version 3.13, getting Py_None, Py_False,
Py_True, Py_Ellipsis and Py_NotImplemented singletons is now
implemented as function calls at the stable ABI level to hide
implementation details. Getting these constants still return borrowed
references.
Add _testlimitedcapi/object.c and test_capi/test_object.py to test
Py_GetConstant() and Py_GetConstantBorrowed() functions.
Mostly we unify the two different implementations of the conversion code (from PyObject * to int64_t. We also drop the PyArg_ParseTuple()-style converter function, as well as rename and move PyInterpreterID_LookUp().
Starting in Python 3.12, we prevented calling fork() and starting new threads
during interpreter finalization (shutdown). This has led to a number of
regressions and flaky tests. We should not prevent starting new threads
(or `fork()`) until all non-daemon threads exit and finalization starts in
earnest.
This changes the checks to use `_PyInterpreterState_GetFinalizing(interp)`,
which is set immediately before terminating non-daemon threads.
Somehow we ended up with two separate counter variables tracking "the next function version".
Most likely this was a historical accident where an old branch was updated incorrectly.
This PR merges the two counters into a single one: `interp->func_state.next_version`.
Since 3.12, allocating a GC object cannot immediately trigger GC. This
allows us to simplify the logic for creating the canonical callback-less
weakref.
* GH-116554: Relax list.sort()'s notion of "descending" run
Rewrote `count_run()` so that sub-runs of equal elements no longer end a descending run. Both ascending and descending runs can have arbitrarily many sub-runs of arbitrarily many equal elements now. This is tricky, because we only use ``<`` comparisons, so checking for equality doesn't come "for free". Surprisingly, it turned out there's a very cheap (one comparison) way to determine whether an ascending run consisted of all-equal elements. That sealed the deal.
In addition, after a descending run is reversed in-place, we now go on to see whether it can be extended by an ascending run that just happens to be adjacent. This succeeds in finding at least one additional element to append about half the time, and so appears to more than repay its cost (the savings come from getting to skip a binary search, when a short run is artificially forced to length MIINRUN later, for each new element `count_run()` can add to the initial run).
While these have been in the back of my mind for years, a question on StackOverflow pushed it to action:
https://stackoverflow.com/questions/78108792/
They were wondering why it took about 4x longer to sort a list like:
[999_999, 999_999, ..., 2, 2, 1, 1, 0, 0]
than "similar" lists. Of course that runs very much faster after this patch.
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: Pieter Eendebak <pieter.eendebak@gmail.com>
This makes nearly all the operations on set thread-safe in the free-threaded build, with the exception of `_PySet_NextEntry` and `setiter_iternext`.
Co-authored-by: Sam Gross <colesbury@gmail.com>
Co-authored-by: Erlend E. Aasland <erlend.aasland@protonmail.com>
This implements the delayed reuse of mimalloc pages that contain Python
objects in the free-threaded build.
Allocations of the same size class are grouped in data structures called
pages. These are different from operating system pages. For thread-safety, we
want to ensure that memory used to store PyObjects remains valid as long as
there may be concurrent lock-free readers; we want to delay using it for
other size classes, in other heaps, or returning it to the operating system.
When a mimalloc page becomes empty, instead of immediately freeing it, we tag
it with a QSBR goal and insert it into a per-thread state linked list of
pages to be freed. When mimalloc needs a fresh page, we process the queue and
free any still empty pages that are now deemed safe to be freed. Pages
waiting to be freed are still available for allocations of the same size
class and allocating from a page prevent it from being freed. There is
additional logic to handle abandoned pages when threads exit.
This sets `MI_DEBUG` to `2` in debug builds to enable `mi_assert_internal()`
calls. Expensive internal assertions are not enabled.
This also disables an assertion in free-threaded builds that would be
triggered by the free-threaded GC because we traverse heaps that are not
owned by the current thread.
The previous code had two bugs. First, the debug offset in the mimalloc
heap includes the two pymalloc debug words, but the pointer passed to
fill_mem_debug does not include them. Second, the current object heap is
correct source for allocations, but not deallocations.