function instead of the getentropy() function. The getentropy() function is
blocking to generate very good quality entropy, os.urandom() doesn't need such
high-quality entropy.
On Windows, the tv_sec field of the timeval structure has the type C long,
whereas it has the type C time_t on all other platforms. A C long has a size of
32 bits (signed inter, 1 bit for the sign, 31 bits for the value) which is not
enough to store an Epoch timestamp after the year 2038.
Add the _PyTime_AsTimevalTime_t() function written for datetime.datetime.now():
convert a _PyTime_t timestamp to a (secs, us) tuple where secs type is time_t.
It allows to support dates after the year 2038 on Windows.
Enhance also _PyTime_AsTimeval_impl() to detect overflow on the number of
seconds when rounding the number of microseconds.
Issue #24891: Fix a race condition at Python startup if the file descriptor
of stdin (0), stdout (1) or stderr (2) is closed while Python is creating
sys.stdin, sys.stdout and sys.stderr objects. These attributes are now set
to None if the creation of the object failed, instead of raising an OSError
exception. Initial patch written by Marco Paolini.
Don't check anymore at runtime that the monotonic clock doesn't go backward.
Yes, it happens. It occurs sometimes each month on a Debian buildbot slave
running in a VM.
The problem is that Python cannot do anything useful if a monotonic clock goes
backward. It was decided in the PEP 418 to not fix the system, but only expose
the clock provided by the OS.
See the latest version of getrandom() manual page:
http://man7.org/linux/man-pages/man2/getrandom.2.html#NOTES
The behavior when a call to getrandom() that is blocked while reading from
/dev/urandom is interrupted by a signal handler depends on the
initialization state of the entropy buffer and on the request size, buflen.
If the entropy is not yet initialized, then the call will fail with the
EINTR error. If the entropy pool has been initialized and the request size
is large (buflen > 256), the call either succeeds, returning a partially
filled buffer, or fails with the error EINTR. If the entropy pool has been
initialized and the request size is small (buflen <= 256), then getrandom()
will not fail with EINTR. Instead, it will return all of the bytes that
have been requested.
Note: py_getrandom() calls getrandom() with flags=0.
Summary of changes:
1. Coroutines now have a distinct, separate from generators
type at the C level: PyGen_Type, and a new typedef PyCoroObject.
PyCoroObject shares the initial segment of struct layout with
PyGenObject, making it possible to reuse existing generators
machinery. The new type is exposed as 'types.CoroutineType'.
As a consequence of having a new type, CO_GENERATOR flag is
no longer applied to coroutines.
2. Having a separate type for coroutines made it possible to add
an __await__ method to the type. Although it is not used by the
interpreter (see details on that below), it makes coroutines
naturally (without using __instancecheck__) conform to
collections.abc.Coroutine and collections.abc.Awaitable ABCs.
[The __instancecheck__ is still used for generator-based
coroutines, as we don't want to add __await__ for generators.]
3. Add new opcode: GET_YIELD_FROM_ITER. The opcode is needed to
allow passing native coroutines to the YIELD_FROM opcode.
Before this change, 'yield from o' expression was compiled to:
(o)
GET_ITER
LOAD_CONST
YIELD_FROM
Now, we use GET_YIELD_FROM_ITER instead of GET_ITER.
The reason for adding a new opcode is that GET_ITER is used
in some contexts (such as 'for .. in' loops) where passing
a coroutine object is invalid.
4. Add two new introspection functions to the inspec module:
getcoroutinestate(c) and getcoroutinelocals(c).
5. inspect.iscoroutine(o) is updated to test if 'o' is a native
coroutine object. Before this commit it used abc.Coroutine,
and it was requested to update inspect.isgenerator(o) to use
abc.Generator; it was decided, however, that inspect functions
should really be tailored for checking for native types.
6. sys.set_coroutine_wrapper(w) API is updated to work with only
native coroutines. Since types.coroutine decorator supports
any type of callables now, it would be confusing that it does
not work for all types of coroutines.
7. Exceptions logic in generators C implementation was updated
to raise clearer messages for coroutines:
Before: TypeError("generator raised StopIteration")
After: TypeError("coroutine raised StopIteration")