The symbol table pass didn't have an explicit case for the list_iter
node which is used only for a nested list comprehension. As a result,
the target of the list comprehension was treated as a use instead of
an assignment. Fix is to add a case to symtable_node() to handle
list_iter.
Also, rework and document a couple of the subtler implementation
issues in the symbol table pass. The symtable_node() switch statement
depends on falling through the last several cases, in order to handle
some of the more complicated nodes like atom. Add a comment
explaining the behavior before the first fall through case. Add a
comment /* fall through */ at the end of case so that it is explicitly
marked as such.
Move the for_stmt case out of the fall through logic, which simplifies
both for_stmt and default. (The default used the local variable start
to skip the first three nodes of a for_stmt when it fell through.)
Rename the flag argument to symtable_assign() to def_flag and add a
comment explaining its use:
The third argument to symatble_assign() is a flag to be passed to
symtable_add_def() if it is eventually called. The flag is useful
to specify the particular type of assignment that should be
recorded, e.g. an assignment caused by import.
Also minor tweaks to internal routines.
Use PyCF_MASK instead of explicit list of flags.
For the MAKE_CLOSURE opcode, the number of items popped off the stack
depends on both the oparg and the number of free variables for the
code object. Fix the code so it accounts for the free variables.
In com_classdef(), record an extra pop to account for the STORE call
after the BUILD_CLASS.
Get rid of some commented out debugging code in com_push() and
com_pop().
Factor string resize logic into helper routine com_check_size().
In com_addbyte(), remove redudant if statement after assert. (They
test the same condition.)
In several routines, use string macros instead of string functions.
"for <var> in <testlist> may no longer be a single test followed by
a comma. This solves SF bug #431886. Note that if the testlist
contains more than one test, a trailing comma is still allowed, for
maximum backward compatibility; but this example is not:
[(x, y) for x in range(10), for y in range(10)]
^
The fix involved creating a new nonterminal 'testlist_safe' whose
definition doesn't allow the trailing comma if there's only one test:
testlist_safe: test [(',' test)+ [',']]
compatibility, this required all places where an array of "struct
memberlist" structures was declared that is referenced from a type's
tp_members slot to change the type of the structure to PyMemberDef;
"struct memberlist" is now only used by old code that still calls
PyMember_Get/Set. The code in PyObject_GenericGetAttr/SetAttr now
calls the new APIs PyMember_GetOne/SetOne, which take a PyMemberDef
argument.
As examples, I added actual docstrings to the attributes of a few
types: file, complex, instance method, super, and xxsubtype.spamlist.
Also converted the symtable to new style getattr.
com_factor(): when a unary minus is attached to a float or imaginary zero,
don't optimize the UNARY_MINUS opcode away: the const dict can't
distinguish between +0.0 and -0.0, so ended up treating both like the
first one added to it. Optimizing UNARY_PLUS away isn't a problem.
(BTW, I already uploaded the 2.2a3 Windows installer, and this isn't
important enough to delay the release.)
- Do not compile unicodeobject, unicodectype, and unicodedata if Unicode is disabled
- check for Py_USING_UNICODE in all places that use Unicode functions
- disables unicode literals, and the builtin functions
- add the types.StringTypes list
- remove Unicode literals from most tests.
When code is compiled and compiler flags are passed in, be sure to
update cf_flags with any features defined by future statements in the
compiled code.
Revised version of Fred's patch, including support for ~ operator.
If the unary +, -, or ~ operator is applied to a constant, don't
generate a UNARY_xxx opcode. Just store the approriate value as a
constant. If the value is negative, extend the string containing the
constant and insert a negative in the 0th position.
For ~, compute the inverse of int and longs and use them directly, but
be prepared to generate code for all other possibilities (invalid
numbers, floats, complex).
Replace uses of PyCF_xxx with CO_xxx.
Replace individual feature slots in PyFutureFeatures with single
bitmask ff_features.
When flags must be transfered among the three parts of the interpreter
that care about them -- the pythonrun layer, the compiler, and the
future feature parser -- can simply or (|) the definitions.
This introduces:
- A new operator // that means floor division (the kind of division
where 1/2 is 0).
- The "future division" statement ("from __future__ import division)
which changes the meaning of the / operator to implement "true
division" (where 1/2 is 0.5).
- New overloadable operators __truediv__ and __floordiv__.
- New slots in the PyNumberMethods struct for true and floor division,
new abstract APIs for them, new opcodes, and so on.
I emphasize that without the future division statement, the semantics
of / will remain unchanged until Python 3.0.
Not yet implemented are warnings (default off) when / is used with int
or long arguments.
This has been on display since 7/31 as SF patch #443474.
Flames to /dev/null.
that info to code dynamically compiled *by* code compiled with generators
enabled. Doesn't yet work because there's still no way to tell the parser
that "yield" is OK (unlike nested_scopes, the parser has its fingers in
this too).
Replaced PyEval_GetNestedScopes by a more-general
PyEval_MergeCompilerFlags. Perhaps I should not have? I doubted it was
*intended* to be part of the public API, so just did.
"return expr" instances in generators (which latter may be generators
due to otherwise invisible "yield" stmts hiding in "if 0" blocks).
This was fun the first time, but this has gotten truly ugly now.
Iterators list and Python-Dev; e.g., these all pass now:
def g1():
try:
return
except:
yield 1
assert list(g1()) == []
def g2():
try:
return
finally:
yield 1
assert list(g2()) == [1]
def g3():
for i in range(3):
yield None
yield None
assert list(g3()) == [None] * 4
compile.c: compile_funcdef and com_return_stmt: Just van Rossum's patch
to compile the same code for "return" regardless of function type (this
goes back to the previous scheme of returning Py_None).
ceval.c: gen_iternext: take a return (but not a yield) of Py_None as
meaning the generator is exhausted.
Armin Rigo pointed out that the way the line-# table got built didn't work
for lines generating more than 255 bytes of bytecode. Fixed as he
suggested, plus corresponding changes to pyassem.py, plus added some
long overdue docs about this subtle table to compile.c.
Bugfix candidate (line numbers may be off in tracebacks under -O).
Check for free in class and method only if nested scopes are enabled.
Add assertion to verify that no free variables occur when nested
scopes are disabled.
XXX When should nested scopes by made non-optional on the trunk?
The new test case demonstrates the bug. Be more careful in
symtable_resolve_free() to add a var to cells or frees only if it
won't be added under some other rule.
XXX Add new assertion that will catch this bug.
new slot tp_iter in type object, plus new flag Py_TPFLAGS_HAVE_ITER
new C API PyObject_GetIter(), calls tp_iter
new builtin iter(), with two forms: iter(obj), and iter(function, sentinel)
new internal object types iterobject and calliterobject
new exception StopIteration
new opcodes for "for" loops, GET_ITER and FOR_ITER (also supported by dis.py)
new magic number for .pyc files
new special method for instances: __iter__() returns an iterator
iteration over dictionaries: "for x in dict" iterates over the keys
iteration over files: "for x in file" iterates over lines
TODO:
documentation
test suite
decide whether to use a different way to spell iter(function, sentinal)
decide whether "for key in dict" is a good idea
use iterators in map/filter/reduce, min/max, and elsewhere (in/not in?)
speed tuning (make next() a slot tp_next???)
frees. Note there doesn't seem to be any way to test LocalsToFast(),
because the instructions that trigger it are illegal in nested scopes
with free variables.
Fix allocation strategy for cells that are also formal parameters.
Instead of emitting LOAD_FAST / STORE_DEREF pairs for each parameter,
have the argument handling code in eval_code2() do the right thing.
A side-effect of this change is that cell variables that are also
arguments are listed at the front of co_cellvars in the order they
appear in the argument list.
has a binding for the name. The fix is in two places:
- in symtable_update_free_vars, ignore a global stmt in a class scope
- in symtable_load_symbols, add extra handling for names that are
defined at class scope and free in a method
Closes SF bug 407800
Made sure that the warnings issued by symtable_check_unoptimized()
(about import * and exec) contain the proper filename and line number,
and are transformed into SyntaxError exceptions with -Werror.
(Also remove warning about module-level global decl, because we can't
distinguish from code passed to exec.)
Define PyCompilerFlags type contains a single element,
cf_nested_scopes, that is true if a nested scopes future statement has
been entered at the interactive prompt.
New API functions:
PyNode_CompileFlags()
PyRun_InteractiveOneFlags()
-- same as their non Flags counterparts except that the take an
optional PyCompilerFlags pointer
compile.c: In jcompile() use PyCompilerFlags argument. If
cf_nested_scopes is true, compile code with nested scopes. If it
is false, but the code has a valid future nested scopes statement,
set it to true.
pythonrun.c: Create a new PyCompilerFlags object in
PyRun_InteractiveLoop() and thread it through to
PyRun_InteractiveOneFlags().
from __future__ import nested_scopes
x=7
def f():
x=1
def g():
global x
def i():
def h():
return x
return h()
return i()
return g()
print f()
print x
This kind of code didn't work correctly because x was treated as free
in i, leading to an attempt to load x in g to make a closure for i.
Solution is to make global decl apply to nested scopes unless their is
an assignment. Thus, x in h is global.
described in PEP 227.
symtable_check_unoptimized() warns about import * and exec with "in"
when it is used in a function that contains a nested function with
free variables. Warnings are issued unless nested scopes are in
effect, in which case these are SyntaxErrors.
symtable_check_shadow() warns about assignments in a function scope
that shadow free variables defined in a nested scope. This will
always generate a warning -- and will behave differently with nested
scopes than without.
Restore full checking for free vars in children, even when nested
scopes are not enabled. This is needed to support warnings for
shadowing.
Change symtable_warn() to return an int-- the return value of
PyErr_WarnExplicit.
Sundry cleanup: Remove commented out code. Break long lines.
global after assign / use.
Note: I'm not updating the PyErr_Warn() call for import * / exec
combined with a function, because I can't trigger it with an example.
Jeremy, just follow the example of the call to PyErr_WarnExplicit()
that I *did* include.