I added it quite a while ago as a strategy for managing interpreter lifetimes relative to the PEP 554 (now 734) implementation. Relatively recently I refactored that implementation to no longer rely on InterpreterID objects. Thus now I'm removing it.
Add Py_GetConstant() and Py_GetConstantBorrowed() functions.
In the limited C API version 3.13, getting Py_None, Py_False,
Py_True, Py_Ellipsis and Py_NotImplemented singletons is now
implemented as function calls at the stable ABI level to hide
implementation details. Getting these constants still return borrowed
references.
Add _testlimitedcapi/object.c and test_capi/test_object.py to test
Py_GetConstant() and Py_GetConstantBorrowed() functions.
Mostly we unify the two different implementations of the conversion code (from PyObject * to int64_t. We also drop the PyArg_ParseTuple()-style converter function, as well as rename and move PyInterpreterID_LookUp().
This changes the free-threaded build to perform a stop-the-world pause
before deleting other thread states when forking and during shutdown.
This fixes some crashes when using multiprocessing and during shutdown
when running with `PYTHON_GIL=0`.
This also changes `PyOS_BeforeFork` to acquire the runtime lock
(i.e., `HEAD_LOCK(&_PyRuntime)`) before forking to ensure that data
protected by the runtime lock (and not just the GIL or stop-the-world)
is in a consistent state before forking.
Before this change, ctypes classes used a custom dict subclass, `StgDict`,
as their `tp_dict`. This acts like a regular dict but also includes extra information
about the type.
This replaces stgdict by `StgInfo`, a C struct on the type, accessed by
`PyObject_GetTypeData()` (PEP-697).
All usage of `StgDict` (mainly variables named `stgdict`, `dict`, `edict` etc.) is
converted to `StgInfo` (named `stginfo`, `info`, `einfo`, etc.).
Where the dict is actually used for class attributes (as a regular PyDict), it's now
called `attrdict`.
This change -- not overriding `tp_dict` -- is made to make me comfortable with
the next part of this PR: moving the initialization logic from `tp_new` to `tp_init`.
The `StgInfo` is set up in `__init__` of each class, with a guard that prevents
calling `__init__` more than once. Note that abstract classes (like `Array` or
`Structure`) are created using `PyType_FromMetaclass` and do not have
`__init__` called.
Previously, this was done in `__new__`, which also wasn't called for abstract
classes.
Since `__init__` can be called from Python code or skipped, there is a tested
guard to ensure `StgInfo` is initialized exactly once before it's used.
Co-authored-by: neonene <53406459+neonene@users.noreply.github.com>
Co-authored-by: Erlend E. Aasland <erlend.aasland@protonmail.com>
Starting in Python 3.12, we prevented calling fork() and starting new threads
during interpreter finalization (shutdown). This has led to a number of
regressions and flaky tests. We should not prevent starting new threads
(or `fork()`) until all non-daemon threads exit and finalization starts in
earnest.
This changes the checks to use `_PyInterpreterState_GetFinalizing(interp)`,
which is set immediately before terminating non-daemon threads.
* Split long.c tests of _testcapi into two parts: limited C API tests
in _testlimitedcapi and non-limited C API tests in _testcapi.
* Move testcapi_long.h from Modules/_testcapi/ to
Modules/_testlimitedcapi/.
* Add MODULE__TESTLIMITEDCAPI_DEPS to Makefile.pre.in.
Split unicode.c tests of _testcapi into two parts: limited C API
tests in _testlimitedcapi and non-limited C API tests in _testcapi.
Update test_codecs.
Split abstract.c and float.c tests of _testcapi into two parts:
limited C API tests in _testlimitedcapi and non-limited C API tests
in _testcapi.
Update test_bytes and test_class.
This includes adding what should be a relatively temporary
`Modules/_decimal/windows/mpdecimal.h` shim to choose between `mpdecimal32vc.h`
or `mpdecimal64vc.h` based on which of `CONFIG_64` or `CONFIG_32` is defined.
Even though it has no internal references to Python objects it still
has a reference to its type by virtue of being a heap type. We need
to provide a traverse function that visits the type, but we do not
need to provide a clear function.
There is a race between when `Thread._tstate_lock` is released[^1] in `Thread._wait_for_tstate_lock()`
and when `Thread._stop()` asserts[^2] that it is unlocked. Consider the following execution
involving threads A, B, and C:
1. A starts.
2. B joins A, blocking on its `_tstate_lock`.
3. C joins A, blocking on its `_tstate_lock`.
4. A finishes and releases its `_tstate_lock`.
5. B acquires A's `_tstate_lock` in `_wait_for_tstate_lock()`, releases it, but is swapped
out before calling `_stop()`.
6. C is scheduled, acquires A's `_tstate_lock` in `_wait_for_tstate_lock()` but is swapped
out before releasing it.
7. B is scheduled, calls `_stop()`, which asserts that A's `_tstate_lock` is not held.
However, C holds it, so the assertion fails.
The race can be reproduced[^3] by inserting sleeps at the appropriate points in
the threading code. To do so, run the `repro_join_race.py` from the linked repo.
There are two main parts to this PR:
1. `_tstate_lock` is replaced with an event that is attached to `PyThreadState`.
The event is set by the runtime prior to the thread being cleared (in the same
place that `_tstate_lock` was released). `Thread.join()` blocks waiting for the
event to be set.
2. `_PyInterpreterState_WaitForThreads()` provides the ability to wait for all
non-daemon threads to exit. To do so, an `is_daemon` predicate was added to
`PyThreadState`. This field is set each time a thread is created. `threading._shutdown()`
now calls into `_PyInterpreterState_WaitForThreads()` instead of waiting on
`_tstate_lock`s.
[^1]: 441affc9e7/Lib/threading.py (L1201)
[^2]: 441affc9e7/Lib/threading.py (L1115)
[^3]: 8194653279
---------
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
Co-authored-by: Antoine Pitrou <antoine@python.org>
Use the NtQueryInformationProcess system call to efficiently retrieve the parent process ID in a single step, rather than using the process snapshots API which retrieves large amounts of unnecessary information and is more prone to failure (since it makes heap allocations).
Includes a fallback to the original win32_getppid implementation in case the unstable API appears to return strange results.
The fildes converter of Argument Clinic now always call
PyObject_AsFileDescriptor(), not only for the limited C API.
The _PyLong_FileDescriptor_Converter() converter stays as a fallback
when PyObject_AsFileDescriptor() cannot be used.
Return 0 on success. Set an exception and return -1 on error.
Fix os.timerfd_settime(): properly report exceptions on
_PyTime_FromSecondsDouble() failure.
No longer export _PyTime_FromSecondsDouble().
Move the following files from Modules/_testcapi/ to
Modules/_testlimitedcapi/:
* bytearray.c
* bytes.c
* pyos.c
* sys.c
Changes:
* Replace PyBytes_AS_STRING() with PyBytes_AsString().
* Replace PyBytes_GET_SIZE() with PyBytes_Size().
* Update related test_capi tests.
* Copy Modules/_testcapi/util.h to Modules/_testlimitedcapi/util.h.
Add a new C extension "_testlimitedcapi" which is only built with the
limited C API.
Move heaptype_relative.c and vectorcall_limited.c from
Modules/_testcapi/ to Modules/_testlimitedcapi/.
* configure: add _testlimitedcapi test extension.
* Update generate_stdlib_module_names.py.
* Update make check-c-globals.
Co-authored-by: Erlend E. Aasland <erlend.aasland@protonmail.com>