We only statically initialize for core code and builtin modules. Extension modules still create
the tuple at runtime. We'll solve that part of interpreter isolation separately.
This change includes generated code. The non-generated changes are in:
* Tools/clinic/clinic.py
* Python/getargs.c
* Include/cpython/modsupport.h
* Makefile.pre.in (re-generate global strings after running clinic)
* very minor tweaks to Modules/_codecsmodule.c and Python/Python-tokenize.c
All other changes are generated code (clinic, global strings).
* Stores all location info in linetable to conform to PEP 626.
* Remove column table from code objects.
* Remove end-line table from code objects.
* Document new location table format
* Moves the bytecode to the end of the corresponding PyCodeObject, and quickens it in-place.
* Removes the almost-always-unused co_varnames, co_freevars, and co_cellvars member caches
* _PyOpcode_Deopt is a new mapping from all opcodes to their un-quickened forms.
* _PyOpcode_InlineCacheEntries is renamed to _PyOpcode_Caches
* _Py_IncrementCountAndMaybeQuicken is renamed to _PyCode_Warmup
* _Py_Quicken is renamed to _PyCode_Quicken
* _co_quickened is renamed to _co_code_adaptive (and is now a read-only memoryview).
* Do not emit unused nonzero opargs anymore in the compiler.
* Constructors of subclasses of some buitin classes (e.g. tuple, list,
frozenset) no longer accept arbitrary keyword arguments.
* Subclass of set can now define a __new__() method with additional
keyword parameters without overriding also __init__().
This PR is part of PEP 657 and augments the compiler to emit ending
line numbers as well as starting and ending columns from the AST
into compiled code objects. This allows bytecodes to be correlated
to the exact source code ranges that generated them.
This information is made available through the following public APIs:
* The `co_positions` method on code objects.
* The C API function `PyCode_Addr2Location`.
Co-authored-by: Batuhan Taskaya <isidentical@gmail.com>
Co-authored-by: Ammar Askar <ammar@ammaraskar.com>
These were reverted in gh-26530 (commit 17c4edc) due to refleaks.
* 2c1e258 - Compute deref offsets in compiler (gh-25152)
* b2bf2bc - Add new internal code objects fields: co_fastlocalnames and co_fastlocalkinds. (gh-26388)
This change fixes the refleaks.
https://bugs.python.org/issue43693
* Revert "bpo-43693: Compute deref offsets in compiler (gh-25152)"
This reverts commit b2bf2bc1ec.
* Revert "bpo-43693: Add new internal code objects fields: co_fastlocalnames and co_fastlocalkinds. (gh-26388)"
This reverts commit 2c1e2583fd.
These two commits are breaking the refleak buildbots.
Merges locals and cells into a single array.
Saves a pointer in the interpreter and means that we don't need the LOAD_CLOSURE opcode any more
https://bugs.python.org/issue43693
A number of places in the code base (notably ceval.c and frameobject.c) rely on mapping variable names to indices in the frame "locals plus" array (AKA fast locals), and thus opargs. Currently the compiler indirectly encodes that information on the code object as the tuples co_varnames, co_cellvars, and co_freevars. At runtime the dependent code must calculate the proper mapping from those, which isn't ideal and impacts performance-sensitive sections. This is something we can easily address in the compiler instead.
This change addresses the situation by replacing internal use of co_varnames, etc. with a single combined tuple of names in locals-plus order, along with a minimal array mapping each to its kind (local vs. cell vs. free). These two new PyCodeObject fields, co_fastlocalnames and co_fastllocalkinds, are not exposed to Python code for now, but co_varnames, etc. are still available with the same values as before (though computed lazily).
Aside from the (mild) performance impact, there are a number of other benefits:
* there's now a clear, direct relationship between locals-plus and variables
* code that relies on the locals-plus-to-name mapping is simpler
* marshaled code objects are smaller and serialize/de-serialize faster
Also note that we can take this approach further by expanding the possible values in co_fastlocalkinds to include specific argument types (e.g. positional-only, kwargs). Doing so would allow further speed-ups in _PyEval_MakeFrameVector(), which is where args get unpacked into the locals-plus array. It would also allow us to shrink marshaled code objects even further.
https://bugs.python.org/issue43693
"Zero cost" exception handling.
* Uses a lookup table to determine how to handle exceptions.
* Removes SETUP_FINALLY and POP_TOP block instructions, eliminating (most of) the runtime overhead of try statements.
* Reduces the size of the frame object by about 60%.