Currently, calling Py_EnterRecursiveCall() and
Py_LeaveRecursiveCall() may use a function call or a static inline
function call, depending if the internal pycore_ceval.h header file
is included or not. Use a different name for the static inline
function to ensure that the static inline function is always used in
Python internals for best performance. Similar approach than
PyThreadState_GET() (function call) and _PyThreadState_GET() (static
inline function).
* Rename _Py_EnterRecursiveCall() to _Py_EnterRecursiveCallTstate()
* Rename _Py_LeaveRecursiveCall() to _Py_LeaveRecursiveCallTstate()
* pycore_ceval.h: Rename Py_EnterRecursiveCall() to
_Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() and
_Py_LeaveRecursiveCall()
We're no longer using _Py_IDENTIFIER() (or _Py_static_string()) in any core CPython code. It is still used in a number of non-builtin stdlib modules.
The replacement is: PyUnicodeObject (not pointer) fields under _PyRuntimeState, statically initialized as part of _PyRuntime. A new _Py_GET_GLOBAL_IDENTIFIER() macro facilitates lookup of the fields (along with _Py_GET_GLOBAL_STRING() for non-identifier strings).
https://bugs.python.org/issue46541#msg411799 explains the rationale for this change.
The core of the change is in:
* (new) Include/internal/pycore_global_strings.h - the declarations for the global strings, along with the macros
* Include/internal/pycore_runtime_init.h - added the static initializers for the global strings
* Include/internal/pycore_global_objects.h - where the struct in pycore_global_strings.h is hooked into _PyRuntimeState
* Tools/scripts/generate_global_objects.py - added generation of the global string declarations and static initializers
I've also added a --check flag to generate_global_objects.py (along with make check-global-objects) to check for unused global strings. That check is added to the PR CI config.
The remainder of this change updates the core code to use _Py_GET_GLOBAL_IDENTIFIER() instead of _Py_IDENTIFIER() and the related _Py*Id functions (likewise for _Py_GET_GLOBAL_STRING() instead of _Py_static_string()). This includes adding a few functions where there wasn't already an alternative to _Py*Id(), replacing the _Py_Identifier * parameter with PyObject *.
The following are not changed (yet):
* stop using _Py_IDENTIFIER() in the stdlib modules
* (maybe) get rid of _Py_IDENTIFIER(), etc. entirely -- this may not be doable as at least one package on PyPI using this (private) API
* (maybe) intern the strings during runtime init
https://bugs.python.org/issue46541
* Make internal APIs that take PyFrameConstructor take a PyFunctionObject instead.
* Add reference to function to frame, borrow references to builtins and globals.
* Add COPY_FREE_VARS instruction to allow specialization of calls to inner functions.
* Move _PyObject_VectorcallTstate() and _PyObject_FastCallTstate() to
pycore_call.h (internal C API).
* Convert PyObject_CallOneArg(), PyObject_Vectorcall(),
_PyObject_FastCall() and PyVectorcall_Function() static inline
functions to regular functions.
* Add _PyVectorcall_FunctionInline() static inline function.
* PyObject_Vectorcall(), _PyObject_FastCall(), and
PyObject_CallOneArg() now call _PyThreadState_GET() rather
than PyThreadState_Get().
Fix typo in the private _PyObject_CallNoArg() function name: rename
it to _PyObject_CallNoArgs() to be consistent with the public
function PyObject_CallNoArgs().
Add _PyVectorcall_Call() helper function.
Add "assert(PyCallable_Check(callable));" to PyVectorcall_Call(),
similar check than PyVectorcall_Function().
* Further refactoring of PyEval_EvalCode and friends. Break into make-frame, and eval-frame parts.
* Simplify function vector call using new _PyEval_Vector.
* Remove unused internal functions: _PyEval_EvalCodeWithName and _PyEval_EvalCode.
* Don't use legacy function PyEval_EvalCodeEx.
* bpo-42979: Enhance abstract.c assertions checking slot result
Add _Py_CheckSlotResult() function which fails with a fatal error if
a slot function succeeded with an exception set or failed with no
exception set: write the slot name, the type name and the current
exception (if an exception is set).
The bulk of this patch was generated automatically with:
for name in \
PyObject_Vectorcall \
Py_TPFLAGS_HAVE_VECTORCALL \
PyObject_VectorcallMethod \
PyVectorcall_Function \
PyObject_CallOneArg \
PyObject_CallMethodNoArgs \
PyObject_CallMethodOneArg \
;
do
echo $name
git grep -lwz _$name | xargs -0 sed -i "s/\b_$name\b/$name/g"
done
old=_PyObject_FastCallDict
new=PyObject_VectorcallDict
git grep -lwz $old | xargs -0 sed -i "s/\b$old\b/$new/g"
and then cleaned up:
- Revert changes to in docs & news
- Revert changes to backcompat defines in headers
- Nudge misaligned comments
* Add _PyObject_VectorcallTstate() function: similar to
_PyObject_Vectorcall(), but with tstate parameter
* Add tstate parameter to _PyObject_MakeTpCall()
bpo-3605, bpo-38733: Optimize _PyErr_Occurred(): remove "tstate ==
NULL" test.
Py_FatalError() no longer calls PyErr_Occurred() if called without
holding the GIL. So PyErr_Occurred() no longer has to support
tstate==NULL case.
_Py_CheckFunctionResult(): use directly _PyErr_Occurred() to avoid
explicit "!= NULL" test.
* Add _Py_EnterRecursiveCall() and _Py_LeaveRecursiveCall() which
require a tstate argument.
* Pass tstate to _Py_MakeRecCheck() and _Py_CheckRecursiveCall().
* Convert Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() macros
to static inline functions.
_PyThreadState_GET() is the most efficient way to get the tstate, and
so using it with _Py_EnterRecursiveCall() and
_Py_LeaveRecursiveCall() should be a little bit more efficient than
using Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() which use
the "slower" PyThreadState_GET().
bpo-37151: remove special case for PyCFunction from PyObject_Call
Alse, make the undocumented function PyCFunction_Call an alias
of PyObject_Call and deprecate it.
The fact that keyword names are strings is now part of the vectorcall and `METH_FASTCALL` protocols. The biggest concrete change is that `_PyStack_UnpackDict` now checks that and raises `TypeError` if not.
CC @markshannon @vstinner
https://bugs.python.org/issue37540
Add a new public PyObject_CallNoArgs() function to the C API: call a
callable Python object without any arguments.
It is the most efficient way to call a callback without any argument.
On x86-64, for example, PyObject_CallFunctionObjArgs(func, NULL)
allocates 960 bytes on the stack per call, whereas
PyObject_CallNoArgs(func) only allocates 624 bytes per call.
It is excluded from stable ABI 3.8.
Replace private _PyObject_CallNoArg() with public
PyObject_CallNoArgs() in C extensions: _asyncio, _datetime,
_elementtree, _pickle, _tkinter and readline.
When inheriting a heap subclass from a vectorcall class that sets
`.tp_call=PyVectorcall_Call` (as recommended in PEP 590), the subclass does
not inherit `_Py_TPFLAGS_HAVE_VECTORCALL`, and thus `PyVectorcall_Call` does
not work for it.
This attempts to solve the issue by:
* always inheriting `tp_vectorcall_offset` unless `tp_call` is overridden
in the subclass
* inheriting _Py_TPFLAGS_HAVE_VECTORCALL for static types, unless `tp_call`
is overridden
* making `PyVectorcall_Call` ignore `_Py_TPFLAGS_HAVE_VECTORCALL`
This means it'll be ever more important to only call `PyVectorcall_Call`
on classes that support vectorcall. In `PyVectorcall_Call`'s intended role
as `tp_call` filler, that's not a problem.
Update PyObject_CallMethodObjArgs and _PyObject_CallMethodIdObjArgs
to use _PyObject_GetMethod to avoid creating a bound method object
in many cases.
On a microbenchmark of PyObject_CallMethodObjArgs calling a method on
an interpreted Python class, this optimization resulted in a 1.7x
speedup.