Moving it valuable with a per-interpreter GIL. However, it is also useful without one, since it allows us to identify refleaks within a single interpreter or where references are escaping an interpreter. This becomes more important as we move the obmalloc state to PyInterpreterState.
https://github.com/python/cpython/issues/102304
builtins and extension module functions and methods that expect boolean values for parameters now accept any Python object rather than just a bool or int type. This is more consistent with how native Python code itself behaves.
Fix potential race condition in code patterns:
* Replace "Py_DECREF(var); var = new;" with "Py_SETREF(var, new);"
* Replace "Py_XDECREF(var); var = new;" with "Py_XSETREF(var, new);"
* Replace "Py_CLEAR(var); var = new;" with "Py_XSETREF(var, new);"
Other changes:
* Replace "old = var; var = new; Py_DECREF(var)"
with "Py_SETREF(var, new);"
* Replace "old = var; var = new; Py_XDECREF(var)"
with "Py_XSETREF(var, new);"
* And remove the "old" variable.
Currently, calling Py_EnterRecursiveCall() and
Py_LeaveRecursiveCall() may use a function call or a static inline
function call, depending if the internal pycore_ceval.h header file
is included or not. Use a different name for the static inline
function to ensure that the static inline function is always used in
Python internals for best performance. Similar approach than
PyThreadState_GET() (function call) and _PyThreadState_GET() (static
inline function).
* Rename _Py_EnterRecursiveCall() to _Py_EnterRecursiveCallTstate()
* Rename _Py_LeaveRecursiveCall() to _Py_LeaveRecursiveCallTstate()
* pycore_ceval.h: Rename Py_EnterRecursiveCall() to
_Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() and
_Py_LeaveRecursiveCall()
We're no longer using _Py_IDENTIFIER() (or _Py_static_string()) in any core CPython code. It is still used in a number of non-builtin stdlib modules.
The replacement is: PyUnicodeObject (not pointer) fields under _PyRuntimeState, statically initialized as part of _PyRuntime. A new _Py_GET_GLOBAL_IDENTIFIER() macro facilitates lookup of the fields (along with _Py_GET_GLOBAL_STRING() for non-identifier strings).
https://bugs.python.org/issue46541#msg411799 explains the rationale for this change.
The core of the change is in:
* (new) Include/internal/pycore_global_strings.h - the declarations for the global strings, along with the macros
* Include/internal/pycore_runtime_init.h - added the static initializers for the global strings
* Include/internal/pycore_global_objects.h - where the struct in pycore_global_strings.h is hooked into _PyRuntimeState
* Tools/scripts/generate_global_objects.py - added generation of the global string declarations and static initializers
I've also added a --check flag to generate_global_objects.py (along with make check-global-objects) to check for unused global strings. That check is added to the PR CI config.
The remainder of this change updates the core code to use _Py_GET_GLOBAL_IDENTIFIER() instead of _Py_IDENTIFIER() and the related _Py*Id functions (likewise for _Py_GET_GLOBAL_STRING() instead of _Py_static_string()). This includes adding a few functions where there wasn't already an alternative to _Py*Id(), replacing the _Py_Identifier * parameter with PyObject *.
The following are not changed (yet):
* stop using _Py_IDENTIFIER() in the stdlib modules
* (maybe) get rid of _Py_IDENTIFIER(), etc. entirely -- this may not be doable as at least one package on PyPI using this (private) API
* (maybe) intern the strings during runtime init
https://bugs.python.org/issue46541
bytesobject.c, bytearrayobject.c and unicodeobject.c now define all
macros used by stringlib, to avoid using undefined macros.
Fix "gcc -Wundef" warnings.
Add types removed by mistake by the commit adding
_PyTypes_FiniTypes().
Move also PyBool_Type at the end, since it depends on PyLong_Type.
PyBytes_Type and PyUnicode_Type no longer depend explicitly on
PyBaseObject_Type: it's the default of PyType_Ready().
The empty bytes object (b'') and the 256 one-character bytes objects were allocated at runtime init. Now we statically allocate and initialize them.
https://bugs.python.org/issue45953
This change is strictly renames and moving code around. It helps in the following ways:
* ensures type-related init functions focus strictly on one of the three aspects (state, objects, types)
* passes in PyInterpreterState * to all those functions, simplifying work on moving types/objects/state to the interpreter
* consistent naming conventions help make what's going on more clear
* keeping API related to a type in the corresponding header file makes it more obvious where to look for it
https://bugs.python.org/issue46008
Move Include/longobject.h non-limited API to a new
Include/cpython/longobject.h header file.
Move the following definitions to the internal C API:
* _PyLong_DigitValue
* _PyLong_FormatAdvancedWriter()
* _PyLong_FormatWriter()
Move Include/pystrhex.h to Include/internal/pycore_strhex.h.
The header file only contains private functions.
The following C extensions are now built with Py_BUILD_CORE_MODULE
macro defined to get access to the internal C API:
* _blake2
* _hashopenssl
* _md5
* _sha1
* _sha3
* _ssl
* binascii
* Move _PyObject_CallNoArgs() to pycore_call.h (internal C API).
* _ssl, _sqlite and _testcapi extensions now call the public
PyObject_CallNoArgs() function, rather than _PyObject_CallNoArgs().
* _lsprof extension is now built with Py_BUILD_CORE_MODULE macro
defined to get access to internal _PyObject_CallNoArgs().
Fix typo in the private _PyObject_CallNoArg() function name: rename
it to _PyObject_CallNoArgs() to be consistent with the public
function PyObject_CallNoArgs().
Pass the current interpreter (interp) rather than the current Python
thread state (tstate) to internal functions which only use the
interpreter.
Modified functions:
* _PyXXX_Fini() and _PyXXX_ClearFreeList() functions
* _PyEval_SignalAsyncExc(), make_pending_calls()
* _PySys_GetObject(), sys_set_object(), sys_set_object_id(), sys_set_object_str()
* should_audit(), set_flags_from_config(), make_flags()
* _PyAtExit_Call()
* init_stdio_encoding()
* etc.
No longer use deprecated aliases to functions:
* Replace PyObject_MALLOC() with PyObject_Malloc()
* Replace PyObject_REALLOC() with PyObject_Realloc()
* Replace PyObject_FREE() with PyObject_Free()
* Replace PyObject_Del() with PyObject_Free()
* Replace PyObject_DEL() with PyObject_Free()
* Speed up comparison of bytes objects with non-bytes objects when
option -b is specified.
* Speed up comparison of bytarray objects with non-buffer object.
Remove complex special methods __int__, __float__, __floordiv__,
__mod__, __divmod__, __rfloordiv__, __rmod__ and __rdivmod__
which always raised a TypeError.
My mentee @xvxvxvxvxv noticed that iterating over array.array is
slightly faster than iterating over bytes. Looking at the source I
observed that arrayiter_next() calls `getitem(ao, it->index++)` wheras
striter_next() uses the idiom (paraphrased)
item = PyLong_FromLong(seq->ob_sval[it->it_index]);
if (item != NULL)
++it->it_next;
return item;
I'm not 100% sure but I think that the second version has fewer
opportunity for the CPU to overlap the `index++` operation with the
rest of the code (which in both cases involves a call). So here I am
optimistically incrementing the index -- if the PyLong_FromLong() call
fails, this will leave the iterator pointing at the next byte, but
honestly I doubt that anyone would seriously consider resuming use of
the iterator after that kind of failure (it would have to be a
MemoryError). And the author of arrayiter_next() made the same
consideration (or never ever gave it a thought :-).
With this, a loop like
for _ in b: pass
is now slightly *faster* than the same thing over an equivalent array,
rather than slightly *slower* (in both cases a few percent).
Always create the empty bytes string singleton.
Optimize PyBytes_FromStringAndSize(str, 0): it no longer has to check
if the empty string singleton was created or not, it is always
available.
Add functions:
* _PyBytes_Init()
* bytes_get_empty(), bytes_new_empty()
* bytes_create_empty_string_singleton()
* unicode_create_empty_string_singleton()
_Py_unicode_state: rename empty structure member to empty_string.
Each interpreter now has its own empty bytes string and single byte
character singletons.
Replace STRINGLIB_EMPTY macro with STRINGLIB_GET_EMPTY() macro.
The PyObject_INIT() and PyObject_INIT_VAR() macros become aliases to,
respectively, PyObject_Init() and PyObject_InitVar() functions.
Rename _PyObject_INIT() and _PyObject_INIT_VAR() static inline
functions to, respectively, _PyObject_Init() and _PyObject_InitVar(),
and move them to pycore_object.h. Remove their return value:
their return type becomes void.
The _datetime module is now built with the Py_BUILD_CORE_MODULE macro
defined.
Remove an outdated comment on _Py_tracemalloc_config.
The PEP 353, written in 2005, introduced PY_FORMAT_SIZE_T. Python no
longer supports macOS 10.4 and Visual Studio 2010, but requires more
recent macOS and Visual Studio versions. In 2020 with Python 3.10, it
is now safe to use directly "%zu" to format size_t and "%zi" to
format Py_ssize_t.
Previously, the result could have been an instance of a subclass of int.
Also revert bpo-26202 and make attributes start, stop and step of the range
object having exact type int.
Add private function _PyNumber_Index() which preserves the old behavior
of PyNumber_Index() for performance to use it in the conversion functions
like PyLong_AsLong().
Added str.removeprefix and str.removesuffix methods and corresponding
bytes, bytearray, and collections.UserString methods to remove affixes
from a string if present. See PEP 616 for a full description.
Don't access PyInterpreterState.config member directly anymore, but
use new functions:
* _PyInterpreterState_GetConfig()
* _PyInterpreterState_SetConfig()
* _Py_GetConfig()