This change separates the signal handling trigger in the eval loop from the "pending calls" machinery. There is no semantic change and the difference in performance is insignificant.
The change makes both components less confusing. It also eliminates the risk of changes to the pending calls affecting signal handling. This is particularly relevant for some upcoming pending calls changes I have in the works.
In _localemodule.c and selectmodule.c, remove dead code that would
cause double decrefs if run.
In addition, replace PyList_SetItem() with PyList_SET_ITEM() in cases
where a new list is populated and there is no possibility of an error.
In addition, check if the list changed size in the loop in array_array_fromlist().
* _PyTuple_ITEMS() gives access to the tuple->ob_item field and cast the
first argument to PyTupleObject*. This internal macro is only usable if
Py_BUILD_CORE is defined.
* Replace &PyTuple_GET_ITEM(ob, 0) with _PyTuple_ITEMS(ob).
* Replace PyTuple_GET_ITEM(op, 1) with &_PyTuple_ITEMS(ob)[1].
If Py_BUILD_CORE is defined, the PyThreadState_GET() macro access
_PyRuntime which comes from the internal pycore_state.h header.
Public headers must not require internal headers.
Move PyThreadState_GET() and _PyInterpreterState_GET_UNSAFE() from
Include/pystate.h to Include/internal/pycore_state.h, and rename
PyThreadState_GET() to _PyThreadState_GET() there.
The PyThreadState_GET() macro of pystate.h is now redefined when
pycore_state.h is included, to use the fast _PyThreadState_GET().
Changes:
* Add _PyThreadState_GET() macro
* Replace "PyThreadState_GET()->interp" with
_PyInterpreterState_GET_UNSAFE()
* Replace PyThreadState_GET() with _PyThreadState_GET() in internal C
files (compiled with Py_BUILD_CORE defined), but keep
PyThreadState_GET() in the public header files.
* _testcapimodule.c: replace PyThreadState_GET() with
PyThreadState_Get(); the module is not compiled with Py_BUILD_CORE
defined.
* pycore_state.h now requires Py_BUILD_CORE to be defined.
* Remove _PyThreadState_Current
* Replace GET_TSTATE() with PyThreadState_GET()
* Replace GET_INTERP_STATE() with _PyInterpreterState_GET_UNSAFE()
* Replace direct access to _PyThreadState_Current with
PyThreadState_GET()
* Replace _PyThreadState_Current with
_PyRuntime.gilstate.tstate_current
* Rename SET_TSTATE() to _PyThreadState_SET(), name more
consistent with _PyThreadState_GET()
* Update outdated comments
`list.append([], None)` was profiled but `list.append([], None, **{})` was not profiled.
Enable profiling for later case.
https://bugs.python.org/issue34125
This will prevent emitting a resource warning when the execution was
interrupted by Ctrl-C between calling open() and entering a 'with' block
in "with open()".
* Added new opcode END_ASYNC_FOR.
* Setting global StopAsyncIteration no longer breaks "async for" loops.
* Jumping into an "async for" loop is now disabled.
* Jumping out of an "async for" loop no longer corrupts the stack.
* Simplify the compiler.
* Add coro.cr_origin and sys.set_coroutine_origin_tracking_depth
* Use coroutine origin information in the unawaited coroutine warning
* Stop using set_coroutine_wrapper in asyncio debug mode
* In BaseEventLoop.set_debug, enable debugging in the correct thread
This kludge is from 1992. Any C99 compiler is going to be able to handle the
ceval dispatch switch.
Anyway, we have much bigger switches than the ceval dispatch one around. (See,
e.g., Objects/unicodetype_db.h.)
The concrete PyDict_* API is used to interact with PyInterpreterState.modules in a number of places. This isn't compatible with all dict subclasses, nor with other Mapping implementations. This patch switches the concrete API usage to the corresponding abstract API calls.
We also add a PyImport_GetModule() function (and some other helpers) to reduce a bunch of code duplication.
* Add Py_UNREACHABLE() as an alias to abort().
* Use Py_UNREACHABLE() instead of assert(0)
* Convert more unreachable code to use Py_UNREACHABLE()
* Document Py_UNREACHABLE() and a few other macros.
PR #1638, for bpo-28411, causes problems in some (very) edge cases. Until that gets sorted out, we're reverting the merge. PR #3506, a fix on top of #1638, is also getting reverted.
* group the (stateful) runtime globals into various topical structs
* consolidate the topical structs under a single top-level _PyRuntimeState struct
* add a check-c-globals.py script that helps identify runtime globals
Other globals are excluded (see globals.txt and check-c-globals.py).
f_trace_lines: enable/disable line trace events
f_trace_opcodes: enable/disable opcode trace events
These are intended primarily for testing of the interpreter
itself, as they make it much easier to emulate signals
arriving at unfortunate times.
* group the (stateful) runtime globals into various topical structs
* consolidate the topical structs under a single top-level _PyRuntimeState struct
* add a check-c-globals.py script that helps identify runtime globals
Other globals are excluded (see globals.txt and check-c-globals.py).