The code for Tier 2 is now only compiled when configured
with `--enable-experimental-jit[=yes|interpreter]`.
We drop support for `PYTHON_UOPS` and -`Xuops`,
but you can disable the interpreter or JIT
at runtime by setting `PYTHON_JIT=0`.
You can also build it without enabling it by default
using `--enable-experimental-jit=yes-off`;
enable with `PYTHON_JIT=1`.
On Windows, the `build.bat` script supports
`--experimental-jit`, `--experimental-jit-off`,
`--experimental-interpreter`.
In the C code, `_Py_JIT` is defined as before
when the JIT is enabled; the new variable
`_Py_TIER2` is defined when the JIT *or* the
interpreter is enabled. It is actually a bitmask:
1: JIT; 2: default-off; 4: interpreter.
Deferred reference counting is not fully implemented yet. As a temporary
measure, we immortalize objects that would use deferred reference
counting to avoid multi-threaded scaling bottlenecks.
This is only performed in the free-threaded build once the first
non-main thread is started. Additionally, some tests, including refleak
tests, suppress this behavior.
This keeps track of the per-thread total reference count operations in
PyThreadState in the free-threaded builds. The count is merged into the
interpreter's total when the thread exits.
I added it quite a while ago as a strategy for managing interpreter lifetimes relative to the PEP 554 (now 734) implementation. Relatively recently I refactored that implementation to no longer rely on InterpreterID objects. Thus now I'm removing it.
Add Py_GetConstant() and Py_GetConstantBorrowed() functions.
In the limited C API version 3.13, getting Py_None, Py_False,
Py_True, Py_Ellipsis and Py_NotImplemented singletons is now
implemented as function calls at the stable ABI level to hide
implementation details. Getting these constants still return borrowed
references.
Add _testlimitedcapi/object.c and test_capi/test_object.py to test
Py_GetConstant() and Py_GetConstantBorrowed() functions.
Biased reference counting maintains two refcount fields in each object:
`ob_ref_local` and `ob_ref_shared`. The true refcount is the sum of these two
fields. In some cases, when refcounting operations are split across threads,
the ob_ref_shared field can be negative (although the total refcount must be
at least zero). In this case, the thread that decremented the refcount
requests that the owning thread give up ownership and merge the refcount
fields.
Fixes a few issues related to refleak tracking in the free-threaded build:
- Count blocks in abandoned segments
- Call `_mi_page_free_collect` earlier during heap traversal in order to get an accurate count of blocks in use.
- Add missing refcount tracking in `_Py_DecRefSharedDebug` and `_Py_ExplicitMergeRefcount`.
- Pause threads in `get_num_global_allocated_blocks` to ensure that traversing the mimalloc heaps is safe.
* gh-112529: Remove PyGC_Head from object pre-header in free-threaded build
This avoids allocating space for PyGC_Head in the free-threaded build.
The GC implementation for free-threaded CPython does not use the
PyGC_Head structure.
* The trashcan mechanism uses the `ob_tid` field instead of `_gc_prev`
in the free-threaded build.
* The GDB libpython.py file now determines the offset of the managed
dict field based on whether the running process is a free-threaded
build. Those are identified by the `ob_ref_local` field in PyObject.
* Fixes `_PySys_GetSizeOf()` which incorrectly incorrectly included the
size of `PyGC_Head` in the size of static `PyTypeObject`.
gh-113750: Fix object resurrection on free-threaded builds
This avoids the undesired re-initializing of fields like `ob_gc_bits`,
`ob_mutex`, and `ob_tid` when an object is resurrected due to its
finalizer being called.
This change has no effect on the default (with GIL) build.
Critical sections are helpers to replace the global interpreter lock
with finer grained locking. They provide similar guarantees to the GIL
and avoid the deadlock risk that plain locking involves. Critical
sections are implicitly ended whenever the GIL would be released. They
are resumed when the GIL would be acquired. Nested critical sections
behave as if the sections were interleaved.
pycore_create_interpreter() now returns a status, rather than
calling Py_FatalError().
* PyInterpreterState_New() now calls Py_ExitStatusException() instead
of calling Py_FatalError() directly.
* Replace Py_FatalError() with PyStatus in init_interpreter() and
_PyObject_InitState().
* _PyErr_SetFromPyStatus() now raises RuntimeError, instead of
ValueError. It can now call PyErr_NoMemory(), raise MemoryError,
if it detects _PyStatus_NO_MEMORY() error message.
Python built with "configure --with-trace-refs" (tracing references)
is now ABI compatible with Python release build and debug build.
Moreover, it now also supports the Limited API.
Change Py_TRACE_REFS build:
* Remove _PyObject_EXTRA_INIT macro.
* The PyObject structure no longer has two extra members (_ob_prev
and _ob_next).
* Use a hash table (_Py_hashtable_t) to trace references (all
objects): PyInterpreterState.object_state.refchain.
* Py_TRACE_REFS build is now ABI compatible with release build and
debug build.
* Limited C API extensions can now be built with Py_TRACE_REFS:
xxlimited, xxlimited_35, _testclinic_limited.
* No longer rename PyModule_Create2() and PyModule_FromDefAndSpec2()
functions to PyModule_Create2TraceRefs() and
PyModule_FromDefAndSpec2TraceRefs().
* _Py_PrintReferenceAddresses() is now called before
finalize_interp_delete() which deletes the refchain hash table.
* test_tracemalloc find_trace() now also filters by size to ignore
the memory allocated by _PyRefchain_Trace().
Test changes for Py_TRACE_REFS:
* Add test.support.Py_TRACE_REFS constant.
* Add test_sys.test_getobjects() to test sys.getobjects() function.
* test_exceptions skips test_recursion_normalizing_with_no_memory()
and test_memory_error_in_PyErr_PrintEx() if Python is built with
Py_TRACE_REFS.
* test_repl skips test_no_memory().
* test_capi skisp test_set_nomemory().
The linked list of objects was a global variable, which broke isolation between interpreters, causing crashes. To solve this, we've moved the linked list to each interpreter.
The _xxsubinterpreters module should not rely on internal API. Some of the functions it uses were recently moved there however. Here we move them back (and expose them properly).
Move the private _PyInterpreterID C API to the internal C API: add a
new pycore_interp_id.h header file.
Remove Include/interpreteridobject.h and
Include/cpython/interpreteridobject.h header files.