Use a `_PyStackRef` and defer the reference to `f_executable` when
possible. This avoids some reference count contention in the common case
of executing the same code object from multiple threads concurrently in
the free-threaded build.
Makes sys.settrace, sys.setprofile, and monitoring generally thread-safe.
Mostly uses a stop-the-world approach and synchronization around the code object's _co_instrumentation_version. There may be a little bit of extra synchronization around the monitoring data that's required to be TSAN clean.
* Add table describing possible executable classes for out-of-process debuggers.
* Remove shim code object creation code as it is no longer needed.
* Make lltrace a bit more robust w.r.t. non-standard frames.
When monitoring LINE events, instrument all instructions that can have a predecessor on a different line.
Then check that the a new line has been hit in the instrumentation code.
This brings the behavior closer to that of 3.11, simplifying implementation and porting of tools.
This is the implementation of PEP683
Motivation:
The PR introduces the ability to immortalize instances in CPython which bypasses reference counting. Tagging objects as immortal allows up to skip certain operations when we know that the object will be around for the entire execution of the runtime.
Note that this by itself will bring a performance regression to the runtime due to the extra reference count checks. However, this brings the ability of having truly immutable objects that are useful in other contexts such as immutable data sharing between sub-interpreters.
* The majority of the monitoring code is in instrumentation.c
* The new instrumentation bytecodes are in bytecodes.c
* legacy_tracing.c adapts the new API to the old sys.setrace and sys.setprofile APIs