Changes to the function version cache:
- In addition to the function object, also store the code object,
and allow the latter to be retrieved even if the function has been evicted.
- Stop assigning new function versions after a critical attribute (e.g. `__code__`)
has been modified; the version is permanently reset to zero in this case.
- Changes to `__annotations__` are no longer considered critical. (This fixes gh-109998.)
Changes to the Tier 2 optimization machinery:
- If we cannot map a function version to a function, but it is still mapped to a code object,
we continue projecting the trace.
The operand of the `_PUSH_FRAME` and `_POP_FRAME` opcodes can be either NULL,
a function object, or a code object with the lowest bit set.
This allows us to trace through code that calls an ephemeral function,
i.e., a function that may not be alive when we are constructing the executor,
e.g. a generator expression or certain nested functions.
We will lose globals removal inside such functions,
but we can still do other peephole operations
(and even possibly [call inlining](https://github.com/python/cpython/pull/116290),
if we decide to do it), which only need the code object.
As before, if we cannot retrieve the code object from the cache, we stop projecting.
This changes the `sym_set_...()` functions to return a `bool` which is `false`
when the symbol is `bottom` after the operation.
All calls to such functions now check this result and go to `hit_bottom`,
a special error label that prints a different message and then reports
that it wasn't able to optimize the trace. No executor will be produced
in this case.
This undoes the *temporary* default disabling of the T2 optimizer pass in gh-115860.
- Add a new test that reproduces Brandt's example from gh-115859; it indeed crashes before gh-116028 with PYTHONUOPSOPTIMIZE=1
- Re-enable the optimizer pass in T2, stop checking PYTHONUOPSOPTIMIZE
- Rename the env var to disable T2 entirely to PYTHON_UOPS_OPTIMIZE (must be explicitly set to 0 to disable)
- Fix skipIf conditions on tests in test_opt.py accordingly
- Export sym_is_bottom() (for debugging)
- Fix various things in the `_BINARY_OP_` specializations in the abstract interpreter:
- DECREF(temp)
- out-of-space check after sym_new_const()
- add sym_matches_type() checks, so even if we somehow reach a binary op with symbolic constants of the wrong type on the stack we won't trigger the type assert
* Rename _Py_UOpsAbstractInterpContext to _Py_UOpsContext and _Py_UOpsSymType to _Py_UopsSymbol.
* #define shortened form of _Py_uop_... names for improved readability.