This PR adds the ability to enable the GIL if it was disabled at
interpreter startup, and modifies the multi-phase module initialization
path to enable the GIL when loading a module, unless that module's spec
includes a slot indicating it can run safely without the GIL.
PEP 703 called the constant for the slot `Py_mod_gil_not_used`; I went
with `Py_MOD_GIL_NOT_USED` for consistency with gh-104148.
A warning will be issued up to once per interpreter for the first
GIL-using module that is loaded. If `-v` is given, a shorter message
will be printed to stderr every time a GIL-using module is loaded
(including the first one that issues a warning).
The module itself is a thin wrapper around calls to functions in
`Python/codecs.c`, so that's where the meaningful changes happened:
- Move codecs-related state that lives on `PyInterpreterState` to a
struct declared in `pycore_codecs.h`.
- In free-threaded builds, add a mutex to `codecs_state` to synchronize
operations on `search_path`. Because `search_path_mutex` is used as a
normal mutex and not a critical section, we must be extremely careful
with operations called while holding it.
- The codec registry is explicitly initialized as part of
`_PyUnicode_InitEncodings` to simplify thread-safety.
Add "Raw" variant of PyTime functions:
* PyTime_MonotonicRaw()
* PyTime_PerfCounterRaw()
* PyTime_TimeRaw()
Changes:
* Add documentation and tests. Tests release the GIL while calling
raw clock functions.
* py_get_system_clock() and py_get_monotonic_clock() now check that
the GIL is hold by the caller if raise_exc is non-zero.
* Reimplement "Unchecked" functions with raw clock functions.
Co-authored-by: Petr Viktorin <encukou@gmail.com>
Account for `add_stopiteration_handler` pushing a block for `async with`.
To allow generator functions that previously almost hit the `CO_MAXBLOCKS`
limit by nesting non-async blocks, the limit is increased by 1.
This increase allows one more block in non-generator functions.
The code for Tier 2 is now only compiled when configured
with `--enable-experimental-jit[=yes|interpreter]`.
We drop support for `PYTHON_UOPS` and -`Xuops`,
but you can disable the interpreter or JIT
at runtime by setting `PYTHON_JIT=0`.
You can also build it without enabling it by default
using `--enable-experimental-jit=yes-off`;
enable with `PYTHON_JIT=1`.
On Windows, the `build.bat` script supports
`--experimental-jit`, `--experimental-jit-off`,
`--experimental-interpreter`.
In the C code, `_Py_JIT` is defined as before
when the JIT is enabled; the new variable
`_Py_TIER2` is defined when the JIT *or* the
interpreter is enabled. It is actually a bitmask:
1: JIT; 2: default-off; 4: interpreter.
Avoid detaching thread state when stopping the world. When re-attaching
the thread state, the thread would attempt to resume the top-most
critical section, which might now be held by a thread paused for our
stop-the-world request.
Deferred reference counting is not fully implemented yet. As a temporary
measure, we immortalize objects that would use deferred reference
counting to avoid multi-threaded scaling bottlenecks.
This is only performed in the free-threaded build once the first
non-main thread is started. Additionally, some tests, including refleak
tests, suppress this behavior.
Basically, I've turned most of _PyImport_LoadDynamicModuleWithSpec() into two new functions (_PyImport_GetModInitFunc() and _PyImport_RunModInitFunc()) and moved the rest of it out into _imp_create_dynamic_impl(). There shouldn't be any changes in behavior.
This change makes some future changes simpler. This is particularly relevant to potentially calling each module init function in the main interpreter first. Thus the critical part of the PR is the addition of _PyImport_RunModInitFunc(), which is strictly focused on running the init func and validating the result. A later PR will take it a step farther by capturing error information rather than raising exceptions.
FWIW, this change also helps readers by clarifying a bit more about what happens when an extension/builtin module is imported.
This is an improvement over the status quo, reducing the likelihood of completely filling the pending calls queue. However, the problem won't go away completely unless we move to an unbounded linked list or add a mechanism for waiting until the queue isn't full.
These are cleanups I've pulled out of gh-118116. Mostly, this change moves code around to align with some future changes and to improve clarity a little. There is one very small change in behavior: we now add the module to the per-interpreter caches after updating the global state, rather than before.
This is a collection of very basic cleanups I've pulled out of gh-118116. It is mostly renaming variables and moving a couple bits of code in functionally equivalent ways.
Makes sys.settrace, sys.setprofile, and monitoring generally thread-safe.
Mostly uses a stop-the-world approach and synchronization around the code object's _co_instrumentation_version. There may be a little bit of extra synchronization around the monitoring data that's required to be TSAN clean.