Instead of surprise crashes and memory corruption, we now hang threads that attempt to re-enter the Python interpreter after Python runtime finalization has started. These are typically daemon threads (our long standing mis-feature) but could also be threads spawned by extension modules that then try to call into Python. This marks the `PyThread_exit_thread` public C API as deprecated as there is no plausible safe way to accomplish that on any supported platform in the face of things like C++ code with finalizers anywhere on a thread's stack. Doing this was the least bad option.
Co-authored-by: Gregory P. Smith <greg@krypto.org>
In the free-threaded build, we need to lock pending->mutex when clearing
the handling_thread in order not to race with a concurrent
make_pending_calls in the same interpreter.
`drop_gil()` assumes that its caller is attached, which means that the current
thread holds the GIL if and only if the GIL is enabled, and the enabled-state
of the GIL won't change. This isn't true, though, because `detach_thread()`
calls `_PyEval_ReleaseLock()` after detaching and
`_PyThreadState_DeleteCurrent()` calls it after removing the current thread
from consideration for stop-the-world requests (effectively detaching it).
Fix this by remembering whether or not a thread acquired the GIL when it last
attached, in `PyThreadState._status.holds_gil`, and check this in `drop_gil()`
instead of `gil->enabled`.
This fixes a crash in `test_multiprocessing_pool_circular_import()`, so I've
reenabled it.
Add the ability to enable/disable the GIL at runtime, and use that in
the C module loading code.
We can't know before running a module init function if it supports
free-threading, so the GIL is temporarily enabled before doing so. If
the module declares support for running without the GIL, the GIL is
later disabled. Otherwise, the GIL is permanently enabled, and will
never be disabled again for the life of the current interpreter.
Split `_PyThreadState_DeleteExcept` into two functions:
- `_PyThreadState_RemoveExcept` removes all thread states other than one
passed as an argument. It returns the removed thread states as a
linked list.
- `_PyThreadState_DeleteList` deletes those dead thread states. It may
call destructors, so we want to "start the world" before calling
`_PyThreadState_DeleteList` to avoid potential deadlocks.
These writes to `pending->calls_to_do` need to be atomic, because other threads
can read (atomically) from `calls_to_do` without holding `pending->mutex`.
In free-threaded builds, running with `PYTHON_GIL=0` will now disable the
GIL. Follow-up issues track work to re-enable the GIL when loading an
incompatible extension, and to disable the GIL by default.
In order to support re-enabling the GIL at runtime, all GIL-related data
structures are initialized as usual, and disabling the GIL simply sets a flag
that causes `take_gil()` and `drop_gil()` to return early.
This change adds an `eval_breaker` field to `PyThreadState`. The primary
motivation is for performance in free-threaded builds: with thread-local eval
breakers, we can stop a specific thread (e.g., for an async exception) without
interrupting other threads.
The source of truth for the global instrumentation version is stored in the
`instrumentation_version` field in PyInterpreterState. Threads usually read the
version from their local `eval_breaker`, where it continues to be colocated
with the eval breaker bits.
Biased reference counting maintains two refcount fields in each object:
`ob_ref_local` and `ob_ref_shared`. The true refcount is the sum of these two
fields. In some cases, when refcounting operations are split across threads,
the ob_ref_shared field can be negative (although the total refcount must be
at least zero). In this case, the thread that decremented the refcount
requests that the owning thread give up ownership and merge the refcount
fields.
The `--disable-gil` builds occasionally need to pause all but one thread. Some
examples include:
* Cyclic garbage collection, where this is often called a "stop the world event"
* Before calling `fork()`, to ensure a consistent state for internal data structures
* During interpreter shutdown, to ensure that daemon threads aren't accessing Python objects
This adds the following functions to implement global and per-interpreter pauses:
* `_PyEval_StopTheWorldAll()` and `_PyEval_StartTheWorldAll()` (for the global runtime)
* `_PyEval_StopTheWorld()` and `_PyEval_StartTheWorld()` (per-interpreter)
(The function names may change.)
These functions are no-ops outside of the `--disable-gil` build.
The `PyThreadState_Clear()` function must only be called with the GIL
held and must be called from the same interpreter as the passed in
thread state. Otherwise, any Python objects on the thread state may be
destroyed using the wrong interpreter, leading to memory corruption.
This is also important for `Py_GIL_DISABLED` builds because free lists
will be associated with PyThreadStates and cleared in
`PyThreadState_Clear()`.
This fixes two places that called `PyThreadState_Clear()` from the wrong
interpreter and adds an assertion to `PyThreadState_Clear()`.
This replaces some usages of PyThread_type_lock with PyMutex, which does not require memory allocation to initialize.
This simplifies some of the runtime initialization and is also one step towards avoiding changing the default raw memory allocator during initialize/finalization, which can be non-thread-safe in some circumstances.
This adds a new field 'state' to PyThreadState that can take on one of three values: _Py_THREAD_ATTACHED, _Py_THREAD_DETACHED, or _Py_THREAD_GC. The "attached" and "detached" states correspond closely to acquiring and releasing the GIL. The "gc" state is current unused, but will be used to implement stop-the-world GC for --disable-gil builds in the near future.
Fix _thread.start_new_thread() race condition. If a thread is created
during Python finalization, the newly spawned thread now exits
immediately instead of trying to access freed memory and lead to a
crash.
thread_run() calls PyEval_AcquireThread() which checks if the thread
must exit. The problem was that tstate was dereferenced earlier in
_PyThreadState_Bind() which leads to a crash most of the time.
Move _PyThreadState_CheckConsistency() from thread_run() to
_PyThreadState_Bind().
thread_run() of _threadmodule.c now calls
_PyThreadState_CheckConsistency() to check if tstate is a dangling
pointer when Python is built in debug mode.
Rename ceval_gil.c is_tstate_valid() to
_PyThreadState_CheckConsistency() to reuse it in _threadmodule.c.
Statistics gathering is now off by default. Use the "-X pystats"
command line option or set the new PYTHONSTATS environment variable
to 1 to turn statistics gathering on at Python startup.
Statistics are no longer dumped at exit if statistics gathering was
off or statistics have been cleared.
Changes:
* Add PYTHONSTATS environment variable.
* sys._stats_dump() now returns False if statistics are not dumped
because they are all equal to zero.
* Add PyConfig._pystats member.
* Add tests on sys functions and on setting PyConfig._pystats to 1.
* Add Include/cpython/pystats.h and Include/internal/pycore_pystats.h
header files.
* Rename '_py_stats' variable to '_Py_stats'.
* Exclude Include/cpython/pystats.h from the Py_LIMITED_API.
* Move pystats.h include from object.h to Python.h.
* Add _Py_StatsOn() and _Py_StatsOff() functions. Remove
'_py_stats_struct' variable from the API: make it static in
specialize.c.
* Document API in Include/pystats.h and Include/cpython/pystats.h.
* Complete pystats documentation in Doc/using/configure.rst.
* Don't write "all zeros" stats: if _stats_off() and _stats_clear()
or _stats_dump() were called.
* _PyEval_Fini() now always call _Py_PrintSpecializationStats() which
does nothing if stats are all zeros.
Co-authored-by: Michael Droettboom <mdboom@gmail.com>
For a while now, pending calls only run in the main thread (in the main interpreter). This PR changes things to allow any thread run a pending call, unless the pending call was explicitly added for the main thread to run.
This avoids the problematic race in drop_gil() by skipping the FORCE_SWITCHING code there for finalizing threads.
(The idea for this approach came out of discussions with @markshannon.)
Remove functions in the C API:
* PyEval_AcquireLock()
* PyEval_ReleaseLock()
* PyEval_InitThreads()
* PyEval_ThreadsInitialized()
But keep these functions in the stable ABI.
Mention "make regen-limited-abi" in "make regen-all".
This is the culmination of PEP 684 (and of my 8-year long multi-core Python project)!
Each subinterpreter may now be created with its own GIL (via Py_NewInterpreterFromConfig()). If not so configured then the interpreter will share with the main interpreter--the status quo since subinterpreters were added decades ago. The main interpreter always has its own GIL and subinterpreters from Py_NewInterpreter() will always share with the main interpreter.
We also add PyInterpreterState.ceval.own_gil to record if the interpreter actually has its own GIL.
Note that for now we don't actually respect own_gil; all interpreters still share the one GIL. However, PyInterpreterState.ceval.own_gil does reflect PyInterpreterConfig.own_gil. That lie is a temporary one that we will fix when the GIL really becomes per-interpreter.
In preparation for a per-interpreter GIL, we add PyInterpreterState.ceval.gil, set it to the shared GIL for each interpreter, and use that rather than using _PyRuntime.ceval.gil directly. Note that _PyRuntime.ceval.gil is still the actual GIL.
This function no longer makes sense, since its runtime parameter is
no longer used. Use directly _PyThreadState_GET() and
_PyInterpreterState_GET() instead.
A PyThreadState can be in one of many states in its lifecycle, represented by some status value. Those statuses haven't been particularly clear, so we're addressing that here. Specifically:
* made the distinct lifecycle statuses clear on PyThreadState
* identified expectations of how various lifecycle-related functions relate to status
* noted the various places where those expectations don't match the actual behavior
At some point we'll need to address the mismatches.
(This change also includes some cleanup.)
https://github.com/python/cpython/issues/59956
The objective of this change is to help make the GILState-related code easier to understand. This mostly involves moving code around and some semantically equivalent refactors. However, there are a also a small number of slight changes in structure and behavior:
* tstate_current is moved out of _PyRuntimeState.gilstate
* autoTSSkey is moved out of _PyRuntimeState.gilstate
* autoTSSkey is initialized earlier
* autoTSSkey is re-initialized (after fork) earlier
https://github.com/python/cpython/issues/59956