* Add NEWS.d entry
* Allow ISO-8601 24:00 alternative to midnight on datetime.time.fromisoformat()
* Allow ISO-8601 24:00 alternative to midnight on datetime.datetime.fromisoformat()
* Add NEWS.d entry
* Improve error message when hour is 24 and minute/second/microsecond is not 0
* Add tests for 24:00 fromisoformat
* Remove duplicate call to days_in_month() by storing in variable
* Add Python implementation
* Fix Lint
* Fix differing error msg in datetime.fromisoformat implementations when 24hrs has non-zero time component(s)
* Fix using time components inside tzinfo in Python implementation
* Don't parse tzinfo in C implementation when invalid iso midnight
* Remove duplicated variable in datetime test assertion line
* Add self to acknowledgements
* Remove duplicate NEWS entry
* Linting
* Add missing test case for when wrapping the year makes it invalid (too large)
In gh-120009 I used an atexit hook to finalize the _datetime module's static types at interpreter shutdown. However, atexit hooks are executed very early in finalization, which is a problem in the few cases where a subclass of one of those static types is still alive until the final GC collection. The static builtin types don't have this probably because they are finalized toward the end, after the final GC collection. To avoid the problem for _datetime, I have applied a similar approach here.
Also, credit goes to @mgorny and @neonene for the new tests.
FYI, I would have liked to take a slightly cleaner approach with managed static types, but wanted to get a smaller fix in first for the sake of backporting. I'll circle back to the cleaner approach with a future change on the main branch.
The _strptime module object was cached in a static local variable (in the datetime.strptime() implementation). That's a problem when it crosses isolation boundaries, such as reinitializing the runtme or between interpreters. This change fixes the problem by dropping the static variable, instead always relying on the normal sys.modules cache (via PyImport_Import()).
Some time strings that contain fractional hours or minutes are permitted
by ISO 8601, but such strings are very unlikely to be intentional. The
current parser does not parse such strings correctly or raise an error.
This change raises a ValueError when hours or minutes contain a decimal mark.
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
We make use of the same mechanism that we use for the static builtin types. This required a few tweaks.
The relevant code could use some cleanup but I opted to avoid the significant churn in this change. I'll tackle that separately.
This change is the final piece needed to make _datetime support multiple interpreters. I've updated the module slot accordingly.
I was able to make use of the existing datetime_state struct, but there was one tricky thing I had to sort out. We mostly aren't converting to heap types, so we can't use things like PyType_GetModuleByDef() to look up the module state. The solution I came up with is somewhat novel, but I consider it straightforward. Also, it shouldn't have much impact on performance.
In summary, this main changes here are:
* I've added some macros to help hide how various objects relate to module state
* as a solution to the module state lookup problem, I've stored the last loaded module on the current interpreter's internal dict (actually a weakref)
* if the static type method is used after the module has been deleted, it is reloaded
* to avoid extra work when loading the module, we directly copy the objects (new refs only) from the old module state into the new state if the old module hasn't been deleted yet
* during module init we set various objects on the static types' __dict__s; to simplify things, we only do that the first time; once those static types have a separate __dict__ per interpreter, we'll do it every time
* we now clear the module state when the module is destroyed (before, we were leaking everything in _datetime_global_state)
This is minimal support. Subinterpreters are not supported yet. That will be addressed in a later change.
Co-authored-by: Eric Snow <ericsnowcurrently@gmail.com>
This PR adds the ability to enable the GIL if it was disabled at
interpreter startup, and modifies the multi-phase module initialization
path to enable the GIL when loading a module, unless that module's spec
includes a slot indicating it can run safely without the GIL.
PEP 703 called the constant for the slot `Py_mod_gil_not_used`; I went
with `Py_MOD_GIL_NOT_USED` for consistency with gh-104148.
A warning will be issued up to once per interpreter for the first
GIL-using module that is loaded. If `-v` is given, a shorter message
will be printed to stderr every time a GIL-using module is loaded
(including the first one that issues a warning).
Moves the validation for invalid years in the C implementation of the `datetime` module into a common location between `fromisoformat` and `fromisocalendar`, which improves the error message and fixes a failed assertion when parsing invalid ISO 8601 years using one of the "ISO weeks" formats.
---------
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
<pycore_time.h> include is no longer needed to get the PyTime_t type
in internal header files. This type is now provided by <Python.h>
include. Add <pycore_time.h> includes to C files instead.
When replace() method is called on a subclass of datetime, date or time,
properly call derived constructor. Previously, only the base class's
constructor was called.
Also, make sure to pass non-zero fold values when creating subclasses in
various methods. Previously, fold was silently ignored.
Now the special comparison methods like `__eq__` and `__lt__` return
NotImplemented if one of comparands is date and other is datetime
instead of ignoring the time part and the time zone or forcefully
return "not equal" or raise TypeError.
It makes comparison of date and datetime subclasses more symmetric
and allows to change the default behavior by overriding
the special comparison methods in subclasses.
It is now the same as if date and datetime was independent classes.
Fix undefined behaviour in datetime.time.fromisoformat() when parsing a string without a timezone. 'tzoffset' is not assigned to by parse_isoformat_time if it returns 0, but time_fromisoformat then passes tzoffset to another function, which is undefined behaviour (even if the function in question does not use the value).
* Use explicit initialiser for m_base
* Add module state stub; establish global state on stack
* Put conversion factors in state struct
* Move PyDateTime_TimeZone_UTC to state
* Move PyDateTime_Epoch to state struct
* Fix ref leaks in and clean up initialisation
It creates a modified copy of an object by calling the object's
__replace__() method.
It is a generalization of dataclasses.replace(), named tuple's _replace()
method and replace() methods in various classes, and supports all these
stdlib classes.
Using `datetime.datetime.utcnow()` and `datetime.datetime.utcfromtimestamp()` will now raise a `DeprecationWarning`.
We also have removed our internal uses of these functions and documented the change.