crash when a generator is created in a C thread that is destroyed while the
generator is still used. The issue was that a generator contains a frame, and
the frame kept a reference to the Python state of the destroyed C thread. The
crash occurs when a trace function is setup.
str.encode, bytes.decode and bytearray.decode now use an
internal API to throw LookupError for known non-text encodings,
rather than attempting the encoding or decoding operation and
then throwing a TypeError for an unexpected output type.
The latter mechanism remains in place for third party non-text
encodings.
- output type errors now redirect users to the type-neutral
convenience functions in the codecs module
- stateless errors that occur during encoding and decoding
will now be automatically wrapped in exceptions that give
the name of the codec involved
_PyUnicode_CompareWithId() is faster than PyUnicode_CompareWithASCIIString()
when both strings are equal and interned.
Add also _PyId_builtins identifier for "builtins" common string.
instead of creating temporary Unicode string objects
Add also more identifiers in pythonrun.c to avoid temporary Unicode string
objets for the interactive interpreter.
- don't call PyErr_NoMemory with interpreter is not initialised
- note that it's OK to call _PyMem_RawStrDup here
- don't include this in the limited API
- capitalise "IO"
- be explicit that a non-zero return indicates an error
- include versionadded marker in docs
This new pre-initialization API allows embedding
applications like Blender to force a particular
encoding and error handler for the standard IO streams.
Also refactors Modules/_testembed.c to let us start
testing multiple embedding scenarios.
(Initial patch by Bastien Montagne)
The setobject freelist was consuming memory but not providing much value.
Even when a freelisted setobject was available, most of the setobject
fields still needed to be initialized and the small table still required
a memset(). This meant that the custom freelisting scheme for sets was
providing almost no incremental benefit over the default Python freelist
scheme used by _PyObject_Malloc() in Objects/obmalloc.c.
-I
Run Python in isolated mode. This also implies -E and -s. In isolated mode
sys.path contains neither the script’s directory nor the user’s
site-packages directory. All PYTHON* environment variables are ignored,
too. Further restrictions may be imposed to prevent the user from
injecting malicious code.
PyStructSequence_InitType() except that it has a return value (0 on success,
-1 on error).
* PyStructSequence_InitType2() now raises MemoryError on memory allocation failure
* Fix also some calls to PyDict_SetItemString(): handle error
Add new enum:
* PyMemAllocatorDomain
Add new structures:
* PyMemAllocator
* PyObjectArenaAllocator
Add new functions:
* PyMem_RawMalloc(), PyMem_RawRealloc(), PyMem_RawFree()
* PyMem_GetAllocator(), PyMem_SetAllocator()
* PyObject_GetArenaAllocator(), PyObject_SetArenaAllocator()
* PyMem_SetupDebugHooks()
Changes:
* PyMem_Malloc()/PyObject_Realloc() now always call malloc()/realloc(), instead
of calling PyObject_Malloc()/PyObject_Realloc() in debug mode.
* PyObject_Malloc()/PyObject_Realloc() now falls back to
PyMem_Malloc()/PyMem_Realloc() for allocations larger than 512 bytes.
* Redesign debug checks on memory block allocators as hooks, instead of using C
macros
* Add a new PyMemAllocators structure
* New functions:
- PyMem_RawMalloc(), PyMem_RawRealloc(), PyMem_RawFree(): GIL-free memory
allocator functions
- PyMem_GetRawAllocators(), PyMem_SetRawAllocators()
- PyMem_GetAllocators(), PyMem_SetAllocators()
- PyMem_SetupDebugHooks()
- _PyObject_GetArenaAllocators(), _PyObject_SetArenaAllocators()
* Add unit test for PyMem_Malloc(0) and PyObject_Malloc(0)
* Add unit test for new get/set allocators functions
* PyObject_Malloc() now falls back on PyMem_Malloc() instead of malloc() if
size is bigger than SMALL_REQUEST_THRESHOLD, and PyObject_Realloc() falls
back on PyMem_Realloc() instead of realloc()
* PyMem_Malloc() and PyMem_Realloc() now always call malloc() and realloc(),
instead of calling PyObject_Malloc() and PyObject_Realloc() in debug mode
Forgot to raise ModuleNotFoundError when None is found in sys.modules.
This led to introducing the C function PyErr_SetImportErrorSubclass()
to make setting ModuleNotFoundError easier.
Also updated the reference docs to mention ModuleNotFoundError
appropriately. Updated the docs for ModuleNotFoundError to mention the
None in sys.modules case.
Lastly, it was noticed that PyErr_SetImportError() was not setting an
exception when returning None in one case. That issue is now fixed.