Note that this is a potentially disruptive change since it may
release some system resources which would otherwise remain
perpetually alive (e.g. database connections kept in thread-local
storage).
* Add also min_char attribute to _PyUnicodeWriter structure (currently unused)
* _PyUnicodeWriter_Init() has no more argument (except the writer itself):
min_length and overallocate must be set explicitly
* In error handlers, only enable overallocation if the replacement string
is longer than 1 character
* CJK decoders don't use overallocation anymore
* Set min_length, instead of preallocating memory using
_PyUnicodeWriter_Prepare(), in many decoders
* _PyUnicode_DecodeUnicodeInternal() checks for integer overflow
Write a function to enable more optimizations:
* If the substring is the whole string and overallocation is disabled, just
keep a reference to the string, don't copy characters
* Avoid a call to the expensive _PyUnicode_FindMaxChar() function when
possible
computation as the overflow behavior of signed integers is undefined.
NOTE: This change is smaller compared to 3.2 as much of this cleanup had
already been done. I added the comment that my change in 3.2 added so that the
code would match up. Otherwise this just adds or synchronizes appropriate UL
designations on some constants to be pedantic.
In practice we require compiling everything with -fwrapv which forces overflow
to be defined as twos compliment but this keeps the code cleaner for checkers
or in the case where someone has compiled it without -fwrapv or their
compiler's equivalent. We could work to get rid of the -fwrapv requirement
in 3.4 but that requires more planning.
Found by Clang trunk's Undefined Behavior Sanitizer (UBSan).
Cleanup only - no functionality or hash values change.
computation as the overflow behavior of signed integers is undefined.
NOTE: This change is smaller compared to 3.2 as much of this cleanup had
already been done. I added the comment that my change in 3.2 added so that the
code would match up. Otherwise this just adds or synchronizes appropriate UL
designations on some constants to be pedantic.
In practice we require compiling everything with -fwrapv which forces overflow
to be defined as twos compliment but this keeps the code cleaner for checkers
or in the case where someone has compiled it without -fwrapv or their
compiler's equivalent.
Found by Clang trunk's Undefined Behavior Sanitizer (UBSan).
Cleanup only - no functionality or hash values change.
computation as the overflow behavior of signed integers is undefined.
In practice we require compiling everything with -fwrapv which forces overflow
to be defined as twos compliment but this keeps the code cleaner for checkers
or in the case where someone has compiled it without -fwrapv or their
compiler's equivalent.
Found by Clang trunk's Undefined Behavior Sanitizer (UBSan).
Cleanup only - no functionality or hash values change.
longer required as of Python 2.5+ when the gc_refs changed from an int (4
bytes) to a Py_ssize_t (8 bytes) as the minimum size is 16 bytes.
The use of a 'long double' triggered a warning by Clang trunk's
Undefined-Behavior Sanitizer as on many platforms a long double requires
16-byte alignment but the Python memory allocator only guarantees 8 byte
alignment.
So our code would allocate and use these structures with technically improper
alignment. Though it didn't matter since the 'dummy' field is never used.
This silences that warning.
Spelunking into code history, the double was added in 2001 to force better
alignment on some platforms and changed to a long double in 2002 to appease
Tru64. That issue should no loner be present since the upgrade from int to
Py_ssize_t where the minimum structure size increased to 16 (unless anyone
knows of a platform where ssize_t is 4 bytes?) or 24 bytes depending on if the
build uses 4 or 8 byte pointers.
We can probably get rid of the double and this union hack all together today.
That is a slightly more invasive change that can be left for later.
A more correct non-hacky alternative if any alignment issues are still found
would be to use a compiler specific alignment declaration on the structure and
determine which value to use at configure time.