Avoid detaching thread state when stopping the world. When re-attaching
the thread state, the thread would attempt to resume the top-most
critical section, which might now be held by a thread paused for our
stop-the-world request.
Quiet erroneous TSAN reports of data races in `_PySeqLock`
TSAN reports a couple of data races between the compare/exchange in
`_PySeqLock_LockWrite` and the non-atomic loads in `_PySeqLock_{Abandon,Unlock}Write`.
This is another instance of TSAN incorrectly modeling failed compare/exchange
as a write instead of a load.
There is a race between when `Thread._tstate_lock` is released[^1] in `Thread._wait_for_tstate_lock()`
and when `Thread._stop()` asserts[^2] that it is unlocked. Consider the following execution
involving threads A, B, and C:
1. A starts.
2. B joins A, blocking on its `_tstate_lock`.
3. C joins A, blocking on its `_tstate_lock`.
4. A finishes and releases its `_tstate_lock`.
5. B acquires A's `_tstate_lock` in `_wait_for_tstate_lock()`, releases it, but is swapped
out before calling `_stop()`.
6. C is scheduled, acquires A's `_tstate_lock` in `_wait_for_tstate_lock()` but is swapped
out before releasing it.
7. B is scheduled, calls `_stop()`, which asserts that A's `_tstate_lock` is not held.
However, C holds it, so the assertion fails.
The race can be reproduced[^3] by inserting sleeps at the appropriate points in
the threading code. To do so, run the `repro_join_race.py` from the linked repo.
There are two main parts to this PR:
1. `_tstate_lock` is replaced with an event that is attached to `PyThreadState`.
The event is set by the runtime prior to the thread being cleared (in the same
place that `_tstate_lock` was released). `Thread.join()` blocks waiting for the
event to be set.
2. `_PyInterpreterState_WaitForThreads()` provides the ability to wait for all
non-daemon threads to exit. To do so, an `is_daemon` predicate was added to
`PyThreadState`. This field is set each time a thread is created. `threading._shutdown()`
now calls into `_PyInterpreterState_WaitForThreads()` instead of waiting on
`_tstate_lock`s.
[^1]: 441affc9e7/Lib/threading.py (L1201)
[^2]: 441affc9e7/Lib/threading.py (L1115)
[^3]: 8194653279
---------
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
Co-authored-by: Antoine Pitrou <antoine@python.org>
Make `_thread.ThreadHandle` thread-safe in free-threaded builds
We protect the mutable state of `ThreadHandle` using a `_PyOnceFlag`.
Concurrent operations (i.e. `join` or `detach`) on `ThreadHandle` block
until it is their turn to execute or an earlier operation succeeds.
Once an operation has been applied successfully all future operations
complete immediately.
The `join()` method is now idempotent. It may be called multiple times
but the underlying OS thread will only be joined once. After `join()`
succeeds, any future calls to `join()` will succeed immediately.
The internal thread handle `detach()` method has been removed.
<pycore_time.h> include is no longer needed to get the PyTime_t type
in internal header files. This type is now provided by <Python.h>
include. Add <pycore_time.h> includes to C files instead.
Makes _PyType_Lookup thread safe, including:
Thread safety of the underlying cache.
Make mutation of mro and type members thread safe
Also _PyType_GetMRO and _PyType_GetBases are currently returning borrowed references which aren't safe.
PyMutex is a one byte lock with fast, inlineable lock and unlock functions for the common uncontended case. The design is based on WebKit's WTF::Lock.
PyMutex is built using the _PyParkingLot APIs, which provides a cross-platform futex-like API (based on WebKit's WTF::ParkingLot). This internal API will be used for building other synchronization primitives used to implement PEP 703, such as one-time initialization and events.
This also includes tests and a mini benchmark in Tools/lockbench/lockbench.py to compare with the existing PyThread_type_lock.
Uncontended acquisition + release:
* Linux (x86-64): PyMutex: 11 ns, PyThread_type_lock: 44 ns
* macOS (arm64): PyMutex: 13 ns, PyThread_type_lock: 18 ns
* Windows (x86-64): PyMutex: 13 ns, PyThread_type_lock: 38 ns
PR Overview:
The primary purpose of this PR is to implement PyMutex, but there are a number of support pieces (described below).
* PyMutex: A 1-byte lock that doesn't require memory allocation to initialize and is generally faster than the existing PyThread_type_lock. The API is internal only for now.
* _PyParking_Lot: A futex-like API based on the API of the same name in WebKit. Used to implement PyMutex.
* _PyRawMutex: A word sized lock used to implement _PyParking_Lot.
* PyEvent: A one time event. This was used a bunch in the "nogil" fork and is useful for testing the PyMutex implementation, so I've included it as part of the PR.
* pycore_llist.h: Defines common operations on doubly-linked list. Not strictly necessary (could do the list operations manually), but they come up frequently in the "nogil" fork. ( Similar to https://man.freebsd.org/cgi/man.cgi?queue)
---------
Co-authored-by: Eric Snow <ericsnowcurrently@gmail.com>