Use a `_PyStackRef` and defer the reference to `f_funcobj` when
possible. This avoids some reference count contention in the common case
of executing the same code object from multiple threads concurrently in
the free-threaded build.
The code for Tier 2 is now only compiled when configured
with `--enable-experimental-jit[=yes|interpreter]`.
We drop support for `PYTHON_UOPS` and -`Xuops`,
but you can disable the interpreter or JIT
at runtime by setting `PYTHON_JIT=0`.
You can also build it without enabling it by default
using `--enable-experimental-jit=yes-off`;
enable with `PYTHON_JIT=1`.
On Windows, the `build.bat` script supports
`--experimental-jit`, `--experimental-jit-off`,
`--experimental-interpreter`.
In the C code, `_Py_JIT` is defined as before
when the JIT is enabled; the new variable
`_Py_TIER2` is defined when the JIT *or* the
interpreter is enabled. It is actually a bitmask:
1: JIT; 2: default-off; 4: interpreter.
This merges all `_CHECK_STACK_SPACE` uops in a trace into a single `_CHECK_STACK_SPACE_OPERAND` uop that checks whether there is enough stack space for all calls included in the entire trace.
Changes to the function version cache:
- In addition to the function object, also store the code object,
and allow the latter to be retrieved even if the function has been evicted.
- Stop assigning new function versions after a critical attribute (e.g. `__code__`)
has been modified; the version is permanently reset to zero in this case.
- Changes to `__annotations__` are no longer considered critical. (This fixes gh-109998.)
Changes to the Tier 2 optimization machinery:
- If we cannot map a function version to a function, but it is still mapped to a code object,
we continue projecting the trace.
The operand of the `_PUSH_FRAME` and `_POP_FRAME` opcodes can be either NULL,
a function object, or a code object with the lowest bit set.
This allows us to trace through code that calls an ephemeral function,
i.e., a function that may not be alive when we are constructing the executor,
e.g. a generator expression or certain nested functions.
We will lose globals removal inside such functions,
but we can still do other peephole operations
(and even possibly [call inlining](https://github.com/python/cpython/pull/116290),
if we decide to do it), which only need the code object.
As before, if we cannot retrieve the code object from the cache, we stop projecting.
This changes the `sym_set_...()` functions to return a `bool` which is `false`
when the symbol is `bottom` after the operation.
All calls to such functions now check this result and go to `hit_bottom`,
a special error label that prints a different message and then reports
that it wasn't able to optimize the trace. No executor will be produced
in this case.
This undoes the *temporary* default disabling of the T2 optimizer pass in gh-115860.
- Add a new test that reproduces Brandt's example from gh-115859; it indeed crashes before gh-116028 with PYTHONUOPSOPTIMIZE=1
- Re-enable the optimizer pass in T2, stop checking PYTHONUOPSOPTIMIZE
- Rename the env var to disable T2 entirely to PYTHON_UOPS_OPTIMIZE (must be explicitly set to 0 to disable)
- Fix skipIf conditions on tests in test_opt.py accordingly
- Export sym_is_bottom() (for debugging)
- Fix various things in the `_BINARY_OP_` specializations in the abstract interpreter:
- DECREF(temp)
- out-of-space check after sym_new_const()
- add sym_matches_type() checks, so even if we somehow reach a binary op with symbolic constants of the wrong type on the stack we won't trigger the type assert
- Any `sym_set_...` call that attempts to set conflicting information
cause the symbol to become `bottom` (contradiction).
- All `sym_is...` and similar calls return false or NULL for `bottom`.
- Everything's tested.
- The tests still pass with `PYTHONUOPSOPTIMIZE=1`.
* Rename _Py_UOpsAbstractInterpContext to _Py_UOpsContext and _Py_UOpsSymType to _Py_UopsSymbol.
* #define shortened form of _Py_uop_... names for improved readability.
* Rename `_testinternalcapi.get_{uop,counter}_optimizer` to `new_*_optimizer`
* Use `_PyUOpName()` instead of` _PyOpcode_uop_name[]`
* Add `target` to executor iterator items -- `list(ex)` now returns `(opcode, oparg, target, operand)` quadruples
* Add executor methods `get_opcode()` and `get_oparg()` to get `vmdata.opcode`, `vmdata.oparg`
* Define a helper for printing uops, and unify various places where they are printed
* Add a hack to summarize_stats.py to fix legacy uop names (e.g. `POP_TOP` -> `_POP_TOP`)
* Define helpers in `test_opt.py` for accessing the set or list of opnames of an executor