In gh-120009 I used an atexit hook to finalize the _datetime module's static types at interpreter shutdown. However, atexit hooks are executed very early in finalization, which is a problem in the few cases where a subclass of one of those static types is still alive until the final GC collection. The static builtin types don't have this probably because they are finalized toward the end, after the final GC collection. To avoid the problem for _datetime, I have applied a similar approach here.
Also, credit goes to @mgorny and @neonene for the new tests.
FYI, I would have liked to take a slightly cleaner approach with managed static types, but wanted to get a smaller fix in first for the sake of backporting. I'll circle back to the cleaner approach with a future change on the main branch.
This adds a `_PyRecursiveMutex` type based on `PyMutex` and uses that
for the import lock. This fixes some data races in the free-threaded
build and generally simplifies the import lock code.
The `_PyThreadState_Bind()` function is called before the first
`PyEval_AcquireThread()` so it's not synchronized with the stop the
world GC. We had a race where `gc_visit_heaps()` might visit a thread's
heap while it's being initialized.
Use a simple atomic int to avoid visiting heaps for threads that are not
yet fully initialized (i.e., before `tstate_mimalloc_bind()` is called).
The race was reproducible by running:
`python Lib/test/test_importlib/partial/pool_in_threads.py`.
We make use of the same mechanism that we use for the static builtin types. This required a few tweaks.
The relevant code could use some cleanup but I opted to avoid the significant churn in this change. I'll tackle that separately.
This change is the final piece needed to make _datetime support multiple interpreters. I've updated the module slot accordingly.
The free-threaded build currently immortalizes objects that use deferred
reference counting (see gh-117783). This typically happens once the
first non-main thread is created, but the behavior can be suppressed for
tests, in subinterpreters, or during a compile() call.
This fixes a race condition involving the tracking of whether the
behavior is suppressed.
Only call `gc_restore_tid()` from stop-the-world contexts.
`worklist_pop()` can be called while other threads are running, so use a
relaxed atomic to modify `ob_tid`.
* Add docs for new APIs
* Add soft-deprecation notices
* Add What's New porting entries
* Update comments referencing `PyFrame_LocalsToFast()` to mention the proxy instead
* Other related cleanups found when looking for refs to the deprecated APIs
Support non-dict globals in LOAD_FROM_DICT_OR_GLOBALS
The implementation basically copies LOAD_GLOBAL. Possibly it could be deduplicated,
but that seems like it may get hairy since the two operations have different operands.
This is important to fix in 3.14 for PEP 649, but it's a bug in earlier versions too,
and we should backport to 3.13 and 3.12 if possible.
Release the GIL before calling `_Py_qsbr_unregister`.
The deadlock could occur when the GIL was enabled at runtime. The
`_Py_qsbr_unregister` call might block while holding the GIL because the
thread state was not active, but the GIL was still held.
Make sure that `gilstate_counter` is not zero in when calling
`PyThreadState_Clear()`. A destructor called from `PyThreadState_Clear()` may
call back into `PyGILState_Ensure()` and `PyGILState_Release()`. If
`gilstate_counter` is zero, it will try to create a new thread state before
the current active thread state is destroyed, leading to an assertion failure
or crash.
* gh-119118: Fix performance regression in tokenize module
- Cache line object to avoid creating a Unicode object
for all of the tokens in the same line.
- Speed up byte offset to column offset conversion by using the
smallest buffer possible to measure the difference.
Co-authored-by: Pablo Galindo <pablogsal@gmail.com>
The fix in gh-119561 introduced an assertion that doesn't hold true if any of the three new test extension modules are loaded more than once. This is fine normally but breaks if the new test_check_state_first() is run more than once, which happens for refleak checking and with the regrtest --forever flag. We fix that here by clearing each of the three modules after loading them. We also tweak a check in _modules_by_index_check().
The assertion was added in gh-118532 but was based on the invalid assumption that PyState_FindModule() would only be called with an already-initialized module def. I've added a test to make sure we don't make that assumption again.
`drop_gil()` assumes that its caller is attached, which means that the current
thread holds the GIL if and only if the GIL is enabled, and the enabled-state
of the GIL won't change. This isn't true, though, because `detach_thread()`
calls `_PyEval_ReleaseLock()` after detaching and
`_PyThreadState_DeleteCurrent()` calls it after removing the current thread
from consideration for stop-the-world requests (effectively detaching it).
Fix this by remembering whether or not a thread acquired the GIL when it last
attached, in `PyThreadState._status.holds_gil`, and check this in `drop_gil()`
instead of `gil->enabled`.
This fixes a crash in `test_multiprocessing_pool_circular_import()`, so I've
reenabled it.
_PyArg_Parser holds static global data generated for modules by Argument Clinic. The _PyArg_Parser.kwtuple field is a tuple object, even though it's stored within a static global. In some cases the tuple is statically allocated and thus it's okay that it gets shared by multiple interpreters. However, in other cases the tuple is set lazily, allocated from the heap using the active interprepreter at the point the tuple is needed.
This is a problem once that interpreter is destroyed since _PyArg_Parser.kwtuple becomes at dangling pointer, leading to crashes. It isn't a problem if the tuple is allocated under the main interpreter, since its lifetime is bound to the lifetime of the runtime. The solution here is to temporarily switch to the main interpreter. The alternative would be to always statically allocate the tuple.
This change also fixes a bug where only the most recent parser was added to the global linked list.
The PEP 649 implementation will require a way to load NotImplementedError
from the bytecode. @markshannon suggested implementing this by converting
LOAD_ASSERTION_ERROR into a more general mechanism for loading constants.
This PR adds this new opcode. I will work on the rest of the implementation
of the PEP separately.
Co-authored-by: Irit Katriel <1055913+iritkatriel@users.noreply.github.com>
* BaseException_vectorcall() now creates a tuple from 'args' array.
* Creation an exception using BaseException_vectorcall() is now a
single function call, rather than having to call
BaseException_new() and then BaseException_init().
Calling BaseException_init() is inefficient since it overrides
the 'args' attribute.
* _PyErr_SetKeyError() now uses PyObject_CallOneArg() to create the
KeyError instance to use BaseException_vectorcall().
`_Py_qsbr_unregister` is called when the PyThreadState is already
detached, so the access to `tstate->qsbr` isn't safe without locking the
shared mutex. Grab the `struct _qsbr_shared` from the interpreter
instead.
This change makes sure all extension/builtin modules have their init function run first by the main interpreter before proceeding with import in the original interpreter (main or otherwise). This means when the import of a single-phase init module fails in an isolated subinterpreter, it won't tie any global state/callbacks to the subinterpreter.
Add the ability to enable/disable the GIL at runtime, and use that in
the C module loading code.
We can't know before running a module init function if it supports
free-threading, so the GIL is temporarily enabled before doing so. If
the module declares support for running without the GIL, the GIL is
later disabled. Otherwise, the GIL is permanently enabled, and will
never be disabled again for the life of the current interpreter.
We already intern and immortalize most string constants. In the
free-threaded build, other constants can be a source of reference count
contention because they are shared by all threads running the same code
objects.
Now, such classes will no longer require changes in Python 3.13 in the normal case.
The test suite for robotframework passes with no DeprecationWarnings under this PR.
I also added a new DeprecationWarning for the case where `_field_types` exists
but is incomplete, since that seems likely to indicate a user mistake.
Use the new public Raw functions:
* _PyTime_PerfCounterUnchecked() with PyTime_PerfCounterRaw()
* _PyTime_TimeUnchecked() with PyTime_TimeRaw()
* _PyTime_MonotonicUnchecked() with PyTime_MonotonicRaw()
Remove internal functions:
* _PyTime_PerfCounterUnchecked()
* _PyTime_TimeUnchecked()
* _PyTime_MonotonicUnchecked()
We have only been tracking each module's PyModuleDef. However, there are some problems with that. For example, in some cases we load single-phase init extension modules from def->m_base.m_init or def->m_base.m_copy, but if multiple modules share a def then we can end up with unexpected behavior.
With this change, we track the following:
* PyModuleDef (same as before)
* for some modules, its init function or a copy of its __dict__, but specific to that module
* whether it is a builtin/core module or a "dynamic" extension
* the interpreter (ID) that owns the cached __dict__ (only if cached)
This also makes it easier to remember the module's kind (e.g. single-phase init) and if loading it previously failed, which I'm doing separately.
* Add CALL_PY_GENERAL, CALL_BOUND_METHOD_GENERAL and call CALL_NON_PY_GENERAL specializations.
* Remove CALL_PY_WITH_DEFAULTS specialization
* Use CALL_NON_PY_GENERAL in more cases when otherwise failing to specialize