When testing element truth values, emit a DeprecationWarning in all implementations.
This had emitted a FutureWarning in the rarely used python-only implementation since ~2.7 and has always been documented as a behavior not to rely on.
Matching an element in a tree search but having it test False can be unexpected. Raising the warning enables making the choice to finally raise an exception for this ambiguous behavior in the future.
This PR adds support for float-style formatting for `Fraction` objects: it supports the `"e"`, `"E"`, `"f"`, `"F"`, `"g"`, `"G"` and `"%"` presentation types, and all the various bells and whistles of the formatting mini-language for those presentation types. The behaviour almost exactly matches that of `float`, but the implementation works with the exact `Fraction` value and does not do an intermediate conversion to `float`, and so avoids loss of precision or issues with numbers that are outside the dynamic range of the `float` type.
Note that the `"n"` presentation type is _not_ supported. That support could be added later if people have a need for it.
There's one corner-case where the behaviour differs from that of float: for the `float` type, if explicit alignment is specified with a fill character of `'0'` and alignment type `'='`, then thousands separators (if specified) are inserted into the padding string:
```python
>>> format(3.14, '0=11,.2f')
'0,000,003.14'
```
The exact same effect can be achieved by using the `'0'` flag:
```python
>>> format(3.14, '011,.2f')
'0,000,003.14'
```
For `Fraction`, only the `'0'` flag has the above behaviour with respect to thousands separators: there's no special-casing of the particular `'0='` fill-character/alignment combination. Instead, we treat the fill character `'0'` just like any other:
```python
>>> format(Fraction('3.14'), '0=11,.2f')
'00000003.14'
>>> format(Fraction('3.14'), '011,.2f')
'0,000,003.14'
```
The `Fraction` formatter is also stricter about combining these two things: it's not permitted to use both the `'0'` flag _and_ explicit alignment, on the basis that we should refuse the temptation to guess in the face of ambiguity. `float` is less picky:
```python
>>> format(3.14, '0<011,.2f')
'3.140000000'
>>> format(Fraction('3.14'), '0<011,.2f')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/mdickinson/Repositories/python/cpython/Lib/fractions.py", line 414, in __format__
raise ValueError(
ValueError: Invalid format specifier '0<011,.2f' for object of type 'Fraction'; can't use explicit alignment when zero-padding
```
Use C long arithmetic instead of PyLong arithmetic to compute the range length, where possible.
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
Co-authored-by: Mark Dickinson <dickinsm@gmail.com>
This PR fixes object allocation in long_subtype_new to ensure that there's at least one digit in all cases, and makes sure that the value of that digit is copied over from the source long.
Needs backport to 3.11, but not any further: the change to require at least one digit was only introduced for Python 3.11.
Fixes#101037.
While the documentation for `optparse` mentioned that both `store_const` and
`append_const` store a constant value, it was not clear where this value was
coming from.
A link to `Option.const` makes this explicit.
The documentation for `rglob` did not mention what `pattern` actually
is.
Mentioning and linking to `fnmatch` makes this explicit, as the
documentation for `fnmatch` both shows the syntax and some explanation.
* Update description of stdout, stderr, and stdin.
Changes:
- Move the ``None`` option (which is default) to the front of the list
of input options
- Move the ``None`` option description up to make the default behavior
more clear (No redirection)
- Remove mention of Child File Descriptors from ``None`` option description
The zipfile.Path open() and read_text() encoding parameter can be supplied as a positional argument without causing a TypeError again. 3.10.0b1 included a regression that made it keyword only.
Documentation update included as users writing code to be compatible with a wide range of versions will need to consider this for some time.
This is a follow-up to gh-101161. The objective is to make it easier to read Python/pystate.c by grouping the functions there in a consistent way. This exclusively involves moving code around and adding various kinds of comments.
https://github.com/python/cpython/issues/59956
The objective of this change is to help make the GILState-related code easier to understand. This mostly involves moving code around and some semantically equivalent refactors. However, there are a also a small number of slight changes in structure and behavior:
* tstate_current is moved out of _PyRuntimeState.gilstate
* autoTSSkey is moved out of _PyRuntimeState.gilstate
* autoTSSkey is initialized earlier
* autoTSSkey is re-initialized (after fork) earlier
https://github.com/python/cpython/issues/59956
You can now write things like this:
```
inst(BUILD_STRING, (pieces[oparg] -- str)) { ... }
inst(LIST_APPEND, (list, unused[oparg-1], v -- list, unused[oparg-1])) { ... }
```
Note that array output effects are only partially supported (they must be named `unused` or correspond to an input effect).