They used to be shared, before 3.12. Returning to sharing them resolves a failure on Py_TRACE_REFS builds.
Co-authored-by: Petr Viktorin <encukou@gmail.com>
This is essentially a cleanup, moving a handful of API declarations to the header files where they fit best, creating new ones when needed.
We do the following:
* add pycore_debug_offsets.h and move _Py_DebugOffsets, etc. there
* inline struct _getargs_runtime_state and struct _gilstate_runtime_state in _PyRuntimeState
* move struct _reftracer_runtime_state to the existing pycore_object_state.h
* add pycore_audit.h and move to it _Py_AuditHookEntry , _PySys_Audit(), and _PySys_ClearAuditHooks
* add audit.h and cpython/audit.h and move the existing audit-related API there
*move the perfmap/trampoline API from cpython/sysmodule.h to cpython/ceval.h, and remove the now-empty cpython/sysmodule.h
Use per-thread refcounting for the reference from function objects to
their corresponding code object. This can be a source of contention when
frequently creating nested functions. Deferred refcounting alone isn't a
great fit here because these references are on the heap and may be
modified by other libraries.
Currently, we only use per-thread reference counting for heap type objects and
the naming reflects that. We will extend it to a few additional types in an
upcoming change to avoid scaling bottlenecks when creating nested functions.
Rename some of the files and functions in preparation for this change.
We were not properly accounting for interpreter memory leaks at
shutdown and had two sources of leaks:
* Objects that use deferred reference counting and were reachable via
static types outlive the final GC. We now disable deferred reference
counting on all objects if we are calling the GC due to interpreter
shutdown.
* `_PyMem_FreeDelayed` did not properly check for interpreter shutdown
so we had some memory blocks that were enqueued to be freed, but
never actually freed.
* `_PyType_FinalizeIdPool` wasn't called at interpreter shutdown.
The free-threaded build partially stores heap type reference counts in
distributed manner in per-thread arrays. This avoids reference count
contention when creating or destroying instances.
Co-authored-by: Ken Jin <kenjin@python.org>
This combines and updates our freelist handling to use a consistent
implementation. Objects in the freelist are linked together using the
first word of memory block.
If configured with freelists disabled, these operations are essentially
no-ops.
The `_PyThreadState_Bind()` function is called before the first
`PyEval_AcquireThread()` so it's not synchronized with the stop the
world GC. We had a race where `gc_visit_heaps()` might visit a thread's
heap while it's being initialized.
Use a simple atomic int to avoid visiting heaps for threads that are not
yet fully initialized (i.e., before `tstate_mimalloc_bind()` is called).
The race was reproducible by running:
`python Lib/test/test_importlib/partial/pool_in_threads.py`.
The free-threaded build currently immortalizes objects that use deferred
reference counting (see gh-117783). This typically happens once the
first non-main thread is created, but the behavior can be suppressed for
tests, in subinterpreters, or during a compile() call.
This fixes a race condition involving the tracking of whether the
behavior is suppressed.
Release the GIL before calling `_Py_qsbr_unregister`.
The deadlock could occur when the GIL was enabled at runtime. The
`_Py_qsbr_unregister` call might block while holding the GIL because the
thread state was not active, but the GIL was still held.
Make sure that `gilstate_counter` is not zero in when calling
`PyThreadState_Clear()`. A destructor called from `PyThreadState_Clear()` may
call back into `PyGILState_Ensure()` and `PyGILState_Release()`. If
`gilstate_counter` is zero, it will try to create a new thread state before
the current active thread state is destroyed, leading to an assertion failure
or crash.
`drop_gil()` assumes that its caller is attached, which means that the current
thread holds the GIL if and only if the GIL is enabled, and the enabled-state
of the GIL won't change. This isn't true, though, because `detach_thread()`
calls `_PyEval_ReleaseLock()` after detaching and
`_PyThreadState_DeleteCurrent()` calls it after removing the current thread
from consideration for stop-the-world requests (effectively detaching it).
Fix this by remembering whether or not a thread acquired the GIL when it last
attached, in `PyThreadState._status.holds_gil`, and check this in `drop_gil()`
instead of `gil->enabled`.
This fixes a crash in `test_multiprocessing_pool_circular_import()`, so I've
reenabled it.
`_Py_qsbr_unregister` is called when the PyThreadState is already
detached, so the access to `tstate->qsbr` isn't safe without locking the
shared mutex. Grab the `struct _qsbr_shared` from the interpreter
instead.
Add the ability to enable/disable the GIL at runtime, and use that in
the C module loading code.
We can't know before running a module init function if it supports
free-threading, so the GIL is temporarily enabled before doing so. If
the module declares support for running without the GIL, the GIL is
later disabled. Otherwise, the GIL is permanently enabled, and will
never be disabled again for the life of the current interpreter.
We already intern and immortalize most string constants. In the
free-threaded build, other constants can be a source of reference count
contention because they are shared by all threads running the same code
objects.
The module itself is a thin wrapper around calls to functions in
`Python/codecs.c`, so that's where the meaningful changes happened:
- Move codecs-related state that lives on `PyInterpreterState` to a
struct declared in `pycore_codecs.h`.
- In free-threaded builds, add a mutex to `codecs_state` to synchronize
operations on `search_path`. Because `search_path_mutex` is used as a
normal mutex and not a critical section, we must be extremely careful
with operations called while holding it.
- The codec registry is explicitly initialized as part of
`_PyUnicode_InitEncodings` to simplify thread-safety.
The code for Tier 2 is now only compiled when configured
with `--enable-experimental-jit[=yes|interpreter]`.
We drop support for `PYTHON_UOPS` and -`Xuops`,
but you can disable the interpreter or JIT
at runtime by setting `PYTHON_JIT=0`.
You can also build it without enabling it by default
using `--enable-experimental-jit=yes-off`;
enable with `PYTHON_JIT=1`.
On Windows, the `build.bat` script supports
`--experimental-jit`, `--experimental-jit-off`,
`--experimental-interpreter`.
In the C code, `_Py_JIT` is defined as before
when the JIT is enabled; the new variable
`_Py_TIER2` is defined when the JIT *or* the
interpreter is enabled. It is actually a bitmask:
1: JIT; 2: default-off; 4: interpreter.
Avoid detaching thread state when stopping the world. When re-attaching
the thread state, the thread would attempt to resume the top-most
critical section, which might now be held by a thread paused for our
stop-the-world request.
Deferred reference counting is not fully implemented yet. As a temporary
measure, we immortalize objects that would use deferred reference
counting to avoid multi-threaded scaling bottlenecks.
This is only performed in the free-threaded build once the first
non-main thread is started. Additionally, some tests, including refleak
tests, suppress this behavior.
Makes sys.settrace, sys.setprofile, and monitoring generally thread-safe.
Mostly uses a stop-the-world approach and synchronization around the code object's _co_instrumentation_version. There may be a little bit of extra synchronization around the monitoring data that's required to be TSAN clean.
TSAN erroneously reports a data race between the `_Py_atomic_compare_exchange_int`
on `tstate->state` in `tstate_try_attach()` and the non-atomic load of
`tstate->state` in `start_the_world`. The `_Py_atomic_compare_exchange_int` fails,
but TSAN erroneously treats it as a store.
This is similar to the situation with threading._DummyThread. The methods (incl. __del__()) of interpreters.Interpreter objects must be careful with interpreters not created by interpreters.create(). The simplest thing to start with is to disable any method that modifies or runs in the interpreter. As part of this, the runtime keeps track of where an interpreter was created. We also handle interpreter "refcounts" properly.
This keeps track of the per-thread total reference count operations in
PyThreadState in the free-threaded builds. The count is merged into the
interpreter's total when the thread exits.
Most mutable data is protected by a striped lock that is keyed on the
referenced object's address. The weakref's hash is protected using the
weakref's per-object lock.
Note that this only affects free-threaded builds. Apart from some minor
refactoring, the added code is all either gated by `ifdef`s or is a no-op
(e.g. `Py_BEGIN_CRITICAL_SECTION`).
I had meant to switch everything to InterpreterError when I added it a while back. At the time I missed a few key spots.
As part of this, I've added print-the-exception to _PyXI_InitTypes() and fixed an error case in `_PyStaticType_InitBuiltin().
This fixes a crash in `test_threading.test_reinit_tls_after_fork()` when
running with the GIL disabled. We already properly handle the case where
the thread state is `_Py_THREAD_ATTACHED` in `tstate_delete_common()` --
we just need to remove an assertion.
Keeping the thread attached means that a stop-the-world pause, such as
for a `fork()`, won't commence until we remove our thread state from the
interpreter's linked list. This prevents a crash when the child process
tries to clean up the dead thread states.
This adds a stop the world pause to make the two functions thread-safe
when the GIL is disabled in the free-threaded build.
Additionally, the main test thread may call `sys._current_exceptions()` as
soon as `g_raised.set()` is called. The background thread may not yet reach
the `leave_g.wait()` line.
When I added _PyInterpreterState_IsRunningMain() and friends last year, I tried to accommodate applications that embed Python but don't call _PyInterpreterState_SetRunningMain() (not that they're expected to). That mostly worked fine until my recent changes in gh-117049, where the subtleties with the fallback code led to failures; the change ended up breaking test_tools.test_freeze, which exercises a basic embedding situation.
The simplest fix is to drop the fallback code I originally added to _PyInterpreterState_IsRunningMain() (and later to _PyThreadState_IsRunningMain()). I've kept the fallback in the _xxsubinterpreters module though. I've also updated Py_FrozenMain() to call _PyInterpreterState_SetRunningMain().
Split `_PyThreadState_DeleteExcept` into two functions:
- `_PyThreadState_RemoveExcept` removes all thread states other than one
passed as an argument. It returns the removed thread states as a
linked list.
- `_PyThreadState_DeleteList` deletes those dead thread states. It may
call destructors, so we want to "start the world" before calling
`_PyThreadState_DeleteList` to avoid potential deadlocks.
I added it quite a while ago as a strategy for managing interpreter lifetimes relative to the PEP 554 (now 734) implementation. Relatively recently I refactored that implementation to no longer rely on InterpreterID objects. Thus now I'm removing it.
Mostly we unify the two different implementations of the conversion code (from PyObject * to int64_t. We also drop the PyArg_ParseTuple()-style converter function, as well as rename and move PyInterpreterID_LookUp().