This combines and updates our freelist handling to use a consistent
implementation. Objects in the freelist are linked together using the
first word of memory block.
If configured with freelists disabled, these operations are essentially
no-ops.
This keeps track of the per-thread total reference count operations in
PyThreadState in the free-threaded builds. The count is merged into the
interpreter's total when the thread exits.
Move private _PyEval functions to the internal C API
(pycore_ceval.h):
* _PyEval_GetBuiltin()
* _PyEval_GetBuiltinId()
* _PyEval_GetSwitchInterval()
* _PyEval_MakePendingCalls()
* _PyEval_SetProfile()
* _PyEval_SetSwitchInterval()
* _PyEval_SetTrace()
No longer export most of these functions.
Move private debug _PyObject functions to the internal C API
(pycore_object.h):
* _PyDebugAllocatorStats()
* _PyObject_CheckConsistency()
* _PyObject_DebugTypeStats()
* _PyObject_IsFreed()
No longer export most of these functions, except of
_PyObject_IsFreed().
Move test functions using _PyObject_IsFreed() from _testcapi to
_testinternalcapi. check_pyobject_is_freed() test no longer catch
_testcapi.error: the tested function cannot raise _testcapi.error.
Remove the following functions from the C API, move them to the internal C
API: add a new pycore_modsupport.h internal header file:
* PyModule_CreateInitialized()
* _PyArg_NoKwnames()
* _Py_VaBuildStack()
No longer export these functions.
Moving it valuable with a per-interpreter GIL. However, it is also useful without one, since it allows us to identify refleaks within a single interpreter or where references are escaping an interpreter. This becomes more important as we move the obmalloc state to PyInterpreterState.
https://github.com/python/cpython/issues/102304
* Add _Py_memory_repeat function to pycore_list
* Add _Py_RefcntAdd function to pycore_object
* Use the new functions in tuplerepeat, list_repeat, and list_inplace_repeat
We're no longer using _Py_IDENTIFIER() (or _Py_static_string()) in any core CPython code. It is still used in a number of non-builtin stdlib modules.
The replacement is: PyUnicodeObject (not pointer) fields under _PyRuntimeState, statically initialized as part of _PyRuntime. A new _Py_GET_GLOBAL_IDENTIFIER() macro facilitates lookup of the fields (along with _Py_GET_GLOBAL_STRING() for non-identifier strings).
https://bugs.python.org/issue46541#msg411799 explains the rationale for this change.
The core of the change is in:
* (new) Include/internal/pycore_global_strings.h - the declarations for the global strings, along with the macros
* Include/internal/pycore_runtime_init.h - added the static initializers for the global strings
* Include/internal/pycore_global_objects.h - where the struct in pycore_global_strings.h is hooked into _PyRuntimeState
* Tools/scripts/generate_global_objects.py - added generation of the global string declarations and static initializers
I've also added a --check flag to generate_global_objects.py (along with make check-global-objects) to check for unused global strings. That check is added to the PR CI config.
The remainder of this change updates the core code to use _Py_GET_GLOBAL_IDENTIFIER() instead of _Py_IDENTIFIER() and the related _Py*Id functions (likewise for _Py_GET_GLOBAL_STRING() instead of _Py_static_string()). This includes adding a few functions where there wasn't already an alternative to _Py*Id(), replacing the _Py_Identifier * parameter with PyObject *.
The following are not changed (yet):
* stop using _Py_IDENTIFIER() in the stdlib modules
* (maybe) get rid of _Py_IDENTIFIER(), etc. entirely -- this may not be doable as at least one package on PyPI using this (private) API
* (maybe) intern the strings during runtime init
https://bugs.python.org/issue46541
When multiplying lists and tuples by `n`, increment each element's refcount, by `n`, just once.
Saves `n-1` increments per element, and allows for a leaner & faster copying loop.
Code by sweeneyde (Dennis Sweeney).
This change is strictly renames and moving code around. It helps in the following ways:
* ensures type-related init functions focus strictly on one of the three aspects (state, objects, types)
* passes in PyInterpreterState * to all those functions, simplifying work on moving types/objects/state to the interpreter
* consistent naming conventions help make what's going on more clear
* keeping API related to a type in the corresponding header file makes it more obvious where to look for it
https://bugs.python.org/issue46008
Freelists for object structs can now be disabled. A new ``configure``
option ``--without-freelists`` can be used to disable all freelists
except empty tuple singleton. Internal Py*_MAXFREELIST macros can now
be defined as 0 without causing compiler warnings and segfaults.
Signed-off-by: Christian Heimes <christian@python.org>
* Avoid making C calls for most calls to Python functions.
* Change initialize_locals(steal=true) and _PyTuple_FromArraySteal to consume the argument references regardless of whether they succeed or fail.
Add an internal _PyType_AllocNoTrack() function to allocate an object
without tracking it in the GC.
Modify dict_new() to use _PyType_AllocNoTrack(): dict subclasses are
now only tracked once all PyDictObject members are initialized.
Calling _PyObject_GC_UNTRACK() is no longer needed for the dict type.
Similar change in tuple_subtype_new() for tuple subclasses.
Replace tuple_gc_track() with _PyObject_GC_TRACK().
* Add Py_TPFLAGS_SEQUENCE and Py_TPFLAGS_MAPPING, add to all relevant standard builtin classes.
* Set relevant flags on collections.abc.Sequence and Mapping.
* Use flags in MATCH_SEQUENCE and MATCH_MAPPING opcodes.
* Inherit Py_TPFLAGS_SEQUENCE and Py_TPFLAGS_MAPPING.
* Add NEWS
* Remove interpreter-state map_abc and seq_abc fields.
Pass the current interpreter (interp) rather than the current Python
thread state (tstate) to internal functions which only use the
interpreter.
Modified functions:
* _PyXXX_Fini() and _PyXXX_ClearFreeList() functions
* _PyEval_SignalAsyncExc(), make_pending_calls()
* _PySys_GetObject(), sys_set_object(), sys_set_object_id(), sys_set_object_str()
* should_audit(), set_flags_from_config(), make_flags()
* _PyAtExit_Call()
* init_stdio_encoding()
* etc.
Py_InitializeFromConfig() now always creates the empty tuple
singleton as soon as possible.
Optimize PyTuple_New(0): it no longer has to check if the empty tuple
was created or not, it is always creatd.
* Add tuple_create_empty_tuple_singleton() function.
* Add tuple_get_empty() function.
* Remove state parameter of tuple_alloc().
The PyObject_INIT() and PyObject_INIT_VAR() macros become aliases to,
respectively, PyObject_Init() and PyObject_InitVar() functions.
Rename _PyObject_INIT() and _PyObject_INIT_VAR() static inline
functions to, respectively, _PyObject_Init() and _PyObject_InitVar(),
and move them to pycore_object.h. Remove their return value:
their return type becomes void.
The _datetime module is now built with the Py_BUILD_CORE_MODULE macro
defined.
Remove an outdated comment on _Py_tracemalloc_config.
In debug mode, ensure that free lists are no longer used after being
finalized. Set numfree to -1 in finalization functions
(eg. _PyList_Fini()), and then check that numfree is not equal to -1
before using a free list (e.g list_dealloc()).
Each interpreter now has its own tuple free lists:
* Move tuple numfree and free_list arrays into PyInterpreterState.
* Define PyTuple_MAXSAVESIZE and PyTuple_MAXFREELIST macros in
pycore_interp.h.
* Add _Py_tuple_state structure. Pass it explicitly to tuple_alloc().
* Add tstate parameter to _PyTuple_ClearFreeList()
* Each interpreter now has its own empty tuple singleton.