More modifications to tests for math.sum: replace the Python

version of msum by a version using a different algorithm, and
use the new float.fromhex method to specify test results exactly.
This commit is contained in:
Mark Dickinson 2008-07-29 18:45:38 +00:00
parent cde8cdd898
commit ff5f16e4e5
1 changed files with 39 additions and 39 deletions

View File

@ -659,48 +659,42 @@ class MathTests(unittest.TestCase):
# on IEEE 754 compliant machines, both of the expressions
# below should round to 10000000000000002.0.
if 1e16+2.999 != 1e16+2.9999:
if 1e16+2.0 != 1e16+2.9999:
return
# Python version of math.sum algorithm, for comparison
# Python version of math.sum, for comparison. Uses a
# different algorithm based on frexp, ldexp and integer
# arithmetic.
from sys import float_info
mant_dig = float_info.mant_dig
etiny = float_info.min_exp - mant_dig
def msum(iterable):
"""Full precision sum of values in iterable. Returns the value of
the sum, rounded to the nearest representable floating-point number
using the round-half-to-even rule.
"""Full precision summation. Compute sum(iterable) without any
intermediate accumulation of error. Based on the 'lsum' function
at http://code.activestate.com/recipes/393090/
"""
# Stage 1: accumulate partials
partials = []
tmant, texp = 0, 0
for x in iterable:
i = 0
for y in partials:
if abs(x) < abs(y):
x, y = y, x
hi = x + y
lo = y - (hi - x)
if lo:
partials[i] = lo
i += 1
x = hi
partials[i:] = [x] if x else []
# Stage 2: sum partials
if not partials:
return 0.0
# sum from the top, stopping as soon as the sum is inexact.
total = partials.pop()
while partials:
x = partials.pop()
old_total, total = total, total + x
error = x - (total - old_total)
if error != 0.0:
# adjust for correct rounding if necessary
if partials and (partials[-1] > 0.0) == (error > 0.0) and \
total + 2*error - total == 2*error:
total += 2*error
break
return total
mant, exp = math.frexp(x)
mant, exp = int(math.ldexp(mant, mant_dig)), exp - mant_dig
if texp > exp:
tmant <<= texp-exp
texp = exp
else:
mant <<= exp-texp
tmant += mant
# Round tmant * 2**texp to a float. The original recipe
# used float(str(tmant)) * 2.0**texp for this, but that's
# a little unsafe because str -> float conversion can't be
# relied upon to do correct rounding on all platforms.
tail = max(len(bin(abs(tmant)))-2 - mant_dig, etiny - texp)
if tail > 0:
h = 1 << (tail-1)
tmant = tmant // (2*h) + bool(tmant & h and tmant & 3*h-1)
texp += tail
return math.ldexp(tmant, texp)
test_values = [
([], 0.0),
@ -710,12 +704,18 @@ class MathTests(unittest.TestCase):
([2.0**53, 1.0, 2.0**-100], 2.0**53+2.0),
([2.0**53+10.0, 1.0, 2.0**-100], 2.0**53+12.0),
([2.0**53-4.0, 0.5, 2.0**-54], 2.0**53-3.0),
([1./n for n in range(1, 1001)], 7.4854708605503451),
([(-1.)**n/n for n in range(1, 1001)], -0.69264743055982025),
([1./n for n in range(1, 1001)],
float.fromhex('0x1.df11f45f4e61ap+2')),
([(-1.)**n/n for n in range(1, 1001)],
float.fromhex('-0x1.62a2af1bd3624p-1')),
([1.7**(i+1)-1.7**i for i in range(1000)] + [-1.7**1000], -1.0),
([1e16, 1., 1e-16], 10000000000000002.0),
([1e16-2., 1.-2.**-53, -(1e16-2.), -(1.-2.**-53)], 0.0),
]
# exercise code for resizing partials array
([2.**n - 2.**(n+50) + 2.**(n+52) for n in range(-1074, 972, 2)] +
[-2.**1022],
float.fromhex('0x1.5555555555555p+970')),
]
for i, (vals, expected) in enumerate(test_values):
try: