bpo-45548: Remove _math.c workarounds for pre-C99 libm (GH-29179)

The :mod:`math` and :mod:`cmath` implementation now require a C99 compatible
``libm`` and no longer ship with workarounds for missing acosh, asinh,
expm1, and log1p functions.

The changeset also removes ``_math.c`` and moves the last remaining
workaround into ``_math.h``. This simplifies static builds with
``Modules/Setup`` and resolves symbol conflicts.

Co-authored-by: Mark Dickinson <mdickinson@enthought.com>
Co-authored-by: Brett Cannon <brett@python.org>
Signed-off-by: Christian Heimes <christian@python.org>
This commit is contained in:
Christian Heimes 2021-10-25 11:25:27 +03:00 committed by GitHub
parent 51ed2c56a1
commit fa26245a1c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 51 additions and 346 deletions

View File

@ -611,10 +611,6 @@ pybuilddir.txt: $(BUILDPYTHON)
exit 1 ; \
fi
# This is shared by the math and cmath modules
Modules/_math.o: Modules/_math.c Modules/_math.h
$(CC) -c $(CCSHARED) $(PY_CORE_CFLAGS) -o $@ $<
# blake2s is auto-generated from blake2b
$(srcdir)/Modules/_blake2/blake2s_impl.c: $(srcdir)/Modules/_blake2/blake2b_impl.c $(srcdir)/Modules/_blake2/blake2b2s.py
$(PYTHON_FOR_REGEN) $(srcdir)/Modules/_blake2/blake2b2s.py
@ -625,7 +621,7 @@ $(srcdir)/Modules/_blake2/blake2s_impl.c: $(srcdir)/Modules/_blake2/blake2b_impl
# -s, --silent or --quiet is always the first char.
# Under BSD make, MAKEFLAGS might be " -s -v x=y".
# Ignore macros passed by GNU make, passed after --
sharedmods: $(BUILDPYTHON) pybuilddir.txt Modules/_math.o
sharedmods: $(BUILDPYTHON) pybuilddir.txt
@case "`echo X $$MAKEFLAGS | sed 's/^X //;s/ -- .*//'`" in \
*\ -s*|s*) quiet="-q";; \
*) quiet="";; \

View File

@ -0,0 +1,3 @@
The :mod:`math` and :mod:`cmath` implementation now require a C99 compatible
``libm`` and no longer ship with workarounds for missing acosh, asinh, atanh,
expm1, and log1p functions.

View File

@ -171,8 +171,8 @@ time timemodule.c
#array arraymodule.c
#audioop audioop.c
#binascii binascii.c
#cmath cmathmodule.c _math.c # -lm
#math mathmodule.c _math.c # -lm
#cmath cmathmodule.c # -lm
#math mathmodule.c # -lm
#pyexpat -I$(srcdir)/Modules/expat expat/xmlparse.c expat/xmlrole.c expat/xmltok.c pyexpat.c
#unicodedata unicodedata.c

View File

@ -1,270 +0,0 @@
/* Definitions of some C99 math library functions, for those platforms
that don't implement these functions already. */
#ifndef Py_BUILD_CORE_BUILTIN
# define Py_BUILD_CORE_MODULE 1
#endif
#include "Python.h"
#include <float.h>
#include "_math.h"
/* The following copyright notice applies to the original
implementations of acosh, asinh and atanh. */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(HAVE_ACOSH) || !defined(HAVE_ASINH)
static const double ln2 = 6.93147180559945286227E-01;
static const double two_pow_p28 = 268435456.0; /* 2**28 */
#endif
#if !defined(HAVE_ASINH) || !defined(HAVE_ATANH)
static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
#endif
#if !defined(HAVE_ATANH) && !defined(Py_NAN)
static const double zero = 0.0;
#endif
#ifndef HAVE_ACOSH
/* acosh(x)
* Method :
* Based on
* acosh(x) = log [ x + sqrt(x*x-1) ]
* we have
* acosh(x) := log(x)+ln2, if x is large; else
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
*
* Special cases:
* acosh(x) is NaN with signal if x<1.
* acosh(NaN) is NaN without signal.
*/
double
_Py_acosh(double x)
{
if (Py_IS_NAN(x)) {
return x+x;
}
if (x < 1.) { /* x < 1; return a signaling NaN */
errno = EDOM;
#ifdef Py_NAN
return Py_NAN;
#else
return (x-x)/(x-x);
#endif
}
else if (x >= two_pow_p28) { /* x > 2**28 */
if (Py_IS_INFINITY(x)) {
return x+x;
}
else {
return log(x) + ln2; /* acosh(huge)=log(2x) */
}
}
else if (x == 1.) {
return 0.0; /* acosh(1) = 0 */
}
else if (x > 2.) { /* 2 < x < 2**28 */
double t = x * x;
return log(2.0 * x - 1.0 / (x + sqrt(t - 1.0)));
}
else { /* 1 < x <= 2 */
double t = x - 1.0;
return m_log1p(t + sqrt(2.0 * t + t * t));
}
}
#endif /* HAVE_ACOSH */
#ifndef HAVE_ASINH
/* asinh(x)
* Method :
* Based on
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
* we have
* asinh(x) := x if 1+x*x=1,
* := sign(x)*(log(x)+ln2) for large |x|, else
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
*/
double
_Py_asinh(double x)
{
double w;
double absx = fabs(x);
if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
return x+x;
}
if (absx < two_pow_m28) { /* |x| < 2**-28 */
return x; /* return x inexact except 0 */
}
if (absx > two_pow_p28) { /* |x| > 2**28 */
w = log(absx) + ln2;
}
else if (absx > 2.0) { /* 2 < |x| < 2**28 */
w = log(2.0 * absx + 1.0 / (sqrt(x * x + 1.0) + absx));
}
else { /* 2**-28 <= |x| < 2= */
double t = x*x;
w = m_log1p(absx + t / (1.0 + sqrt(1.0 + t)));
}
return copysign(w, x);
}
#endif /* HAVE_ASINH */
#ifndef HAVE_ATANH
/* atanh(x)
* Method :
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
* 2.For x>=0.5
* 1 2x x
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * -------)
* 2 1 - x 1 - x
*
* For x<0.5
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
*
* Special cases:
* atanh(x) is NaN if |x| >= 1 with signal;
* atanh(NaN) is that NaN with no signal;
*
*/
double
_Py_atanh(double x)
{
double absx;
double t;
if (Py_IS_NAN(x)) {
return x+x;
}
absx = fabs(x);
if (absx >= 1.) { /* |x| >= 1 */
errno = EDOM;
#ifdef Py_NAN
return Py_NAN;
#else
return x / zero;
#endif
}
if (absx < two_pow_m28) { /* |x| < 2**-28 */
return x;
}
if (absx < 0.5) { /* |x| < 0.5 */
t = absx+absx;
t = 0.5 * m_log1p(t + t*absx / (1.0 - absx));
}
else { /* 0.5 <= |x| <= 1.0 */
t = 0.5 * m_log1p((absx + absx) / (1.0 - absx));
}
return copysign(t, x);
}
#endif /* HAVE_ATANH */
#ifndef HAVE_EXPM1
/* Mathematically, expm1(x) = exp(x) - 1. The expm1 function is designed
to avoid the significant loss of precision that arises from direct
evaluation of the expression exp(x) - 1, for x near 0. */
double
_Py_expm1(double x)
{
/* For abs(x) >= log(2), it's safe to evaluate exp(x) - 1 directly; this
also works fine for infinities and nans.
For smaller x, we can use a method due to Kahan that achieves close to
full accuracy.
*/
if (fabs(x) < 0.7) {
double u;
u = exp(x);
if (u == 1.0)
return x;
else
return (u - 1.0) * x / log(u);
}
else
return exp(x) - 1.0;
}
#endif /* HAVE_EXPM1 */
/* log1p(x) = log(1+x). The log1p function is designed to avoid the
significant loss of precision that arises from direct evaluation when x is
small. */
double
_Py_log1p(double x)
{
#ifdef HAVE_LOG1P
/* Some platforms supply a log1p function but don't respect the sign of
zero: log1p(-0.0) gives 0.0 instead of the correct result of -0.0.
To save fiddling with configure tests and platform checks, we handle the
special case of zero input directly on all platforms.
*/
if (x == 0.0) {
return x;
}
else {
return log1p(x);
}
#else
/* For x small, we use the following approach. Let y be the nearest float
to 1+x, then
1+x = y * (1 - (y-1-x)/y)
so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, the
second term is well approximated by (y-1-x)/y. If abs(x) >=
DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
then y-1-x will be exactly representable, and is computed exactly by
(y-1)-x.
If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
round-to-nearest then this method is slightly dangerous: 1+x could be
rounded up to 1+DBL_EPSILON instead of down to 1, and in that case
y-1-x will not be exactly representable any more and the result can be
off by many ulps. But this is easily fixed: for a floating-point
number |x| < DBL_EPSILON/2., the closest floating-point number to
log(1+x) is exactly x.
*/
double y;
if (fabs(x) < DBL_EPSILON / 2.) {
return x;
}
else if (-0.5 <= x && x <= 1.) {
/* WARNING: it's possible that an overeager compiler
will incorrectly optimize the following two lines
to the equivalent of "return log(1.+x)". If this
happens, then results from log1p will be inaccurate
for small x. */
y = 1.+x;
return log(y) - ((y - 1.) - x) / y;
}
else {
/* NaNs and infinities should end up here */
return log(1.+x);
}
#endif /* ifdef HAVE_LOG1P */
}

View File

@ -1,41 +1,24 @@
#ifdef HAVE_ACOSH
# define m_acosh acosh
#else
/* if the system doesn't have acosh, use the substitute
function defined in Modules/_math.c. */
double _Py_acosh(double x);
# define m_acosh _Py_acosh
#endif
/* log1p(x) = log(1+x). The log1p function is designed to avoid the
significant loss of precision that arises from direct evaluation when x is
small. Use the substitute from _math.h on all platforms: it includes
workarounds for buggy handling of zeros.
*/
#ifdef HAVE_ASINH
# define m_asinh asinh
#else
/* if the system doesn't have asinh, use the substitute
function defined in Modules/_math.c. */
double _Py_asinh(double x);
# define m_asinh _Py_asinh
#endif
static double
_Py_log1p(double x)
{
/* Some platforms supply a log1p function but don't respect the sign of
zero: log1p(-0.0) gives 0.0 instead of the correct result of -0.0.
#ifdef HAVE_ATANH
# define m_atanh atanh
#else
/* if the system doesn't have atanh, use the substitute
function defined in Modules/_math.c. */
double _Py_atanh(double x);
#define m_atanh _Py_atanh
#endif
To save fiddling with configure tests and platform checks, we handle the
special case of zero input directly on all platforms.
*/
if (x == 0.0) {
return x;
}
else {
return log1p(x);
}
}
#ifdef HAVE_EXPM1
# define m_expm1 expm1
#else
/* if the system doesn't have expm1, use the substitute
function defined in Modules/_math.c. */
double _Py_expm1(double x);
#define m_expm1 _Py_expm1
#endif
double _Py_log1p(double x);
/* Use the substitute from _math.c on all platforms:
it includes workarounds for buggy handling of zeros. */
#define m_log1p _Py_log1p

View File

@ -8,11 +8,13 @@
#include "Python.h"
#include "pycore_dtoa.h"
#include "_math.h"
/* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
float.h. We assume that FLT_RADIX is either 2 or 16. */
#include <float.h>
/* For _Py_log1p with workarounds for buggy handling of zeros. */
#include "_math.h"
#include "clinic/cmathmodule.c.h"
/*[clinic input]
module cmath
@ -246,7 +248,7 @@ cmath_acos_impl(PyObject *module, Py_complex z)
s2.imag = z.imag;
s2 = cmath_sqrt_impl(module, s2);
r.real = 2.*atan2(s1.real, s2.real);
r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
r.imag = asinh(s2.real*s1.imag - s2.imag*s1.real);
}
errno = 0;
return r;
@ -280,7 +282,7 @@ cmath_acosh_impl(PyObject *module, Py_complex z)
s2.real = z.real + 1.;
s2.imag = z.imag;
s2 = cmath_sqrt_impl(module, s2);
r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
r.real = asinh(s1.real*s2.real + s1.imag*s2.imag);
r.imag = 2.*atan2(s1.imag, s2.real);
}
errno = 0;
@ -340,7 +342,7 @@ cmath_asinh_impl(PyObject *module, Py_complex z)
s2.real = 1.-z.imag;
s2.imag = z.real;
s2 = cmath_sqrt_impl(module, s2);
r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
r.real = asinh(s1.real*s2.imag-s2.real*s1.imag);
r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
}
errno = 0;

View File

@ -61,6 +61,9 @@ raised for division by zero and mod by zero.
#include "pycore_call.h" // _PyObject_CallNoArgs()
#include "pycore_dtoa.h" // _Py_dg_infinity()
#include "pycore_long.h" // _PyLong_GetZero()
/* For DBL_EPSILON in _math.h */
#include <float.h>
/* For _Py_log1p with workarounds for buggy handling of zeros. */
#include "_math.h"
#include "clinic/mathmodule.c.h"
@ -1166,14 +1169,14 @@ FUNC1(acos, acos, 0,
"acos($module, x, /)\n--\n\n"
"Return the arc cosine (measured in radians) of x.\n\n"
"The result is between 0 and pi.")
FUNC1(acosh, m_acosh, 0,
FUNC1(acosh, acosh, 0,
"acosh($module, x, /)\n--\n\n"
"Return the inverse hyperbolic cosine of x.")
FUNC1(asin, asin, 0,
"asin($module, x, /)\n--\n\n"
"Return the arc sine (measured in radians) of x.\n\n"
"The result is between -pi/2 and pi/2.")
FUNC1(asinh, m_asinh, 0,
FUNC1(asinh, asinh, 0,
"asinh($module, x, /)\n--\n\n"
"Return the inverse hyperbolic sine of x.")
FUNC1(atan, atan, 0,
@ -1184,7 +1187,7 @@ FUNC2(atan2, m_atan2,
"atan2($module, y, x, /)\n--\n\n"
"Return the arc tangent (measured in radians) of y/x.\n\n"
"Unlike atan(y/x), the signs of both x and y are considered.")
FUNC1(atanh, m_atanh, 0,
FUNC1(atanh, atanh, 0,
"atanh($module, x, /)\n--\n\n"
"Return the inverse hyperbolic tangent of x.")
FUNC1(cbrt, cbrt, 0,
@ -1245,7 +1248,7 @@ FUNC1A(erfc, m_erfc,
FUNC1(exp, exp, 1,
"exp($module, x, /)\n--\n\n"
"Return e raised to the power of x.")
FUNC1(expm1, m_expm1, 1,
FUNC1(expm1, expm1, 1,
"expm1($module, x, /)\n--\n\n"
"Return exp(x)-1.\n\n"
"This function avoids the loss of precision involved in the direct "

View File

@ -332,7 +332,6 @@
<ClCompile Include="..\Modules\_json.c" />
<ClCompile Include="..\Modules\_localemodule.c" />
<ClCompile Include="..\Modules\_lsprof.c" />
<ClCompile Include="..\Modules\_math.c" />
<ClCompile Include="..\Modules\_pickle.c" />
<ClCompile Include="..\Modules\_randommodule.c" />
<ClCompile Include="..\Modules\_sha3\sha3module.c" />

View File

@ -689,9 +689,6 @@
<ClCompile Include="..\Modules\_lsprof.c">
<Filter>Modules</Filter>
</ClCompile>
<ClCompile Include="..\Modules\_math.c">
<Filter>Modules</Filter>
</ClCompile>
<ClCompile Include="..\Modules\_pickle.c">
<Filter>Modules</Filter>
</ClCompile>

16
configure vendored
View File

@ -15092,7 +15092,7 @@ fi
LIBS_SAVE=$LIBS
LIBS="$LIBS $LIBM"
for ac_func in acosh asinh atanh erf erfc expm1 finite gamma
for ac_func in acosh asinh atanh erf erfc expm1 finite gamma lgamma log1p log2 tgamma
do :
as_ac_var=`$as_echo "ac_cv_func_$ac_func" | $as_tr_sh`
ac_fn_c_check_func "$LINENO" "$ac_func" "$as_ac_var"
@ -15101,21 +15101,13 @@ if eval test \"x\$"$as_ac_var"\" = x"yes"; then :
#define `$as_echo "HAVE_$ac_func" | $as_tr_cpp` 1
_ACEOF
fi
done
for ac_func in lgamma log1p log2 tgamma
do :
as_ac_var=`$as_echo "ac_cv_func_$ac_func" | $as_tr_sh`
ac_fn_c_check_func "$LINENO" "$ac_func" "$as_ac_var"
if eval test \"x\$"$as_ac_var"\" = x"yes"; then :
cat >>confdefs.h <<_ACEOF
#define `$as_echo "HAVE_$ac_func" | $as_tr_cpp` 1
_ACEOF
else
as_fn_error $? "Python requires C99 compatible libm" "$LINENO" 5
fi
done
LIBS=$LIBS_SAVE
# For multiprocessing module, check that sem_open
# actually works. For FreeBSD versions <= 7.2,

View File

@ -4692,8 +4692,12 @@ fi
LIBS_SAVE=$LIBS
LIBS="$LIBS $LIBM"
AC_CHECK_FUNCS([acosh asinh atanh erf erfc expm1 finite gamma])
AC_CHECK_FUNCS([lgamma log1p log2 tgamma])
AC_CHECK_FUNCS(
[acosh asinh atanh erf erfc expm1 finite gamma lgamma log1p log2 tgamma],
[],
[AC_MSG_ERROR([Python requires C99 compatible libm])]
)
LIBS=$LIBS_SAVE
# For multiprocessing module, check that sem_open
# actually works. For FreeBSD versions <= 7.2,

View File

@ -904,18 +904,14 @@ class PyBuildExt(build_ext):
# Context Variables
self.add(Extension('_contextvars', ['_contextvarsmodule.c']))
shared_math = 'Modules/_math.o'
# math library functions, e.g. sin()
self.add(Extension('math', ['mathmodule.c'],
extra_objects=[shared_math],
depends=['_math.h', shared_math],
depends=['_math.h'],
libraries=['m']))
# complex math library functions
self.add(Extension('cmath', ['cmathmodule.c'],
extra_objects=[shared_math],
depends=['_math.h', shared_math],
depends=['_math.h'],
libraries=['m']))
# time libraries: librt may be needed for clock_gettime()