mirror of https://github.com/python/cpython
gh-112540: Support zero inputs in geometric_mean() (gh-112880)
This commit is contained in:
parent
76929fdeeb
commit
f3bff4ee9d
|
@ -527,8 +527,10 @@ def fmean(data, weights=None):
|
|||
def geometric_mean(data):
|
||||
"""Convert data to floats and compute the geometric mean.
|
||||
|
||||
Raises a StatisticsError if the input dataset is empty,
|
||||
if it contains a zero, or if it contains a negative value.
|
||||
Raises a StatisticsError if the input dataset is empty
|
||||
or if it contains a negative value.
|
||||
|
||||
Returns zero if the product of inputs is zero.
|
||||
|
||||
No special efforts are made to achieve exact results.
|
||||
(However, this may change in the future.)
|
||||
|
@ -536,11 +538,25 @@ def geometric_mean(data):
|
|||
>>> round(geometric_mean([54, 24, 36]), 9)
|
||||
36.0
|
||||
"""
|
||||
try:
|
||||
return exp(fmean(map(log, data)))
|
||||
except ValueError:
|
||||
raise StatisticsError('geometric mean requires a non-empty dataset '
|
||||
'containing positive numbers') from None
|
||||
n = 0
|
||||
found_zero = False
|
||||
def count_positive(iterable):
|
||||
nonlocal n, found_zero
|
||||
for n, x in enumerate(iterable, start=1):
|
||||
if x > 0.0 or math.isnan(x):
|
||||
yield x
|
||||
elif x == 0.0:
|
||||
found_zero = True
|
||||
else:
|
||||
raise StatisticsError('No negative inputs allowed', x)
|
||||
total = fsum(map(log, count_positive(data)))
|
||||
if not n:
|
||||
raise StatisticsError('Must have a non-empty dataset')
|
||||
if math.isnan(total):
|
||||
return math.nan
|
||||
if found_zero:
|
||||
return math.nan if total == math.inf else 0.0
|
||||
return exp(total / n)
|
||||
|
||||
|
||||
def harmonic_mean(data, weights=None):
|
||||
|
|
|
@ -2302,10 +2302,12 @@ class TestGeometricMean(unittest.TestCase):
|
|||
StatisticsError = statistics.StatisticsError
|
||||
with self.assertRaises(StatisticsError):
|
||||
geometric_mean([]) # empty input
|
||||
with self.assertRaises(StatisticsError):
|
||||
geometric_mean([3.5, 0.0, 5.25]) # zero input
|
||||
with self.assertRaises(StatisticsError):
|
||||
geometric_mean([3.5, -4.0, 5.25]) # negative input
|
||||
with self.assertRaises(StatisticsError):
|
||||
geometric_mean([0.0, -4.0, 5.25]) # negative input with zero
|
||||
with self.assertRaises(StatisticsError):
|
||||
geometric_mean([3.5, -math.inf, 5.25]) # negative infinity
|
||||
with self.assertRaises(StatisticsError):
|
||||
geometric_mean(iter([])) # empty iterator
|
||||
with self.assertRaises(TypeError):
|
||||
|
@ -2328,6 +2330,12 @@ class TestGeometricMean(unittest.TestCase):
|
|||
with self.assertRaises(ValueError):
|
||||
geometric_mean([Inf, -Inf])
|
||||
|
||||
# Cases with zero
|
||||
self.assertEqual(geometric_mean([3, 0.0, 5]), 0.0) # Any zero gives a zero
|
||||
self.assertEqual(geometric_mean([3, -0.0, 5]), 0.0) # Negative zero allowed
|
||||
self.assertTrue(math.isnan(geometric_mean([0, NaN]))) # NaN beats zero
|
||||
self.assertTrue(math.isnan(geometric_mean([0, Inf]))) # Because 0.0 * Inf -> NaN
|
||||
|
||||
def test_mixed_int_and_float(self):
|
||||
# Regression test for b.p.o. issue #28327
|
||||
geometric_mean = statistics.geometric_mean
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
The statistics.geometric_mean() function now returns zero for datasets
|
||||
containing a zero. Formerly, it would raise an exception.
|
Loading…
Reference in New Issue