mirror of https://github.com/python/cpython
bpo-46407: Optimizing some modulo operations (GH-30653)
Added new internal functions to compute mod without also computing the quotient. The loops can be leaner then, which leads to modestly but reliably faster execution in contexts that know they don't need the quotient. Code by Jeremiah Vivian (Pascual).
This commit is contained in:
parent
e7a6285f1b
commit
f10dafc430
|
@ -1860,6 +1860,7 @@ Kurt Vile
|
|||
Norman Vine
|
||||
Pauli Virtanen
|
||||
Frank Visser
|
||||
Jeremiah Vivian (Pascual)
|
||||
Johannes Vogel
|
||||
Michael Vogt
|
||||
Radu Voicilas
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
Optimize some modulo operations in ``Objects/longobject.c``. Patch by Jeremiah Vivian.
|
|
@ -1670,6 +1670,35 @@ divrem1(PyLongObject *a, digit n, digit *prem)
|
|||
return long_normalize(z);
|
||||
}
|
||||
|
||||
/* Remainder of long pin, w/ size digits, by non-zero digit n,
|
||||
returning the remainder. pin points at the LSD. */
|
||||
|
||||
static digit
|
||||
inplace_rem1(digit *pin, Py_ssize_t size, digit n)
|
||||
{
|
||||
twodigits rem = 0;
|
||||
|
||||
assert(n > 0 && n <= PyLong_MASK);
|
||||
while (--size >= 0)
|
||||
rem = ((rem << PyLong_SHIFT) | pin[size]) % n;
|
||||
return (digit)rem;
|
||||
}
|
||||
|
||||
/* Get the remainder of an integer divided by a digit, returning
|
||||
the remainder as the result of the function. The sign of a is
|
||||
ignored; n should not be zero. */
|
||||
|
||||
static PyLongObject *
|
||||
rem1(PyLongObject *a, digit n)
|
||||
{
|
||||
const Py_ssize_t size = Py_ABS(Py_SIZE(a));
|
||||
|
||||
assert(n > 0 && n <= PyLong_MASK);
|
||||
return (PyLongObject *)PyLong_FromLong(
|
||||
(long)inplace_rem1(a->ob_digit, size, n)
|
||||
);
|
||||
}
|
||||
|
||||
/* Convert an integer to a base 10 string. Returns a new non-shared
|
||||
string. (Return value is non-shared so that callers can modify the
|
||||
returned value if necessary.) */
|
||||
|
@ -2689,6 +2718,47 @@ long_divrem(PyLongObject *a, PyLongObject *b,
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* Int remainder, top-level routine */
|
||||
|
||||
static int
|
||||
long_rem(PyLongObject *a, PyLongObject *b, PyLongObject **prem)
|
||||
{
|
||||
Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
|
||||
|
||||
if (size_b == 0) {
|
||||
PyErr_SetString(PyExc_ZeroDivisionError,
|
||||
"integer modulo by zero");
|
||||
return -1;
|
||||
}
|
||||
if (size_a < size_b ||
|
||||
(size_a == size_b &&
|
||||
a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
|
||||
/* |a| < |b|. */
|
||||
*prem = (PyLongObject *)long_long((PyObject *)a);
|
||||
return -(*prem == NULL);
|
||||
}
|
||||
if (size_b == 1) {
|
||||
*prem = rem1(a, b->ob_digit[0]);
|
||||
if (*prem == NULL)
|
||||
return -1;
|
||||
}
|
||||
else {
|
||||
/* Slow path using divrem. */
|
||||
x_divrem(a, b, prem);
|
||||
if (*prem == NULL)
|
||||
return -1;
|
||||
}
|
||||
/* Set the sign. */
|
||||
if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) {
|
||||
_PyLong_Negate(prem);
|
||||
if (*prem == NULL) {
|
||||
Py_CLEAR(*prem);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Unsigned int division with remainder -- the algorithm. The arguments v1
|
||||
and w1 should satisfy 2 <= Py_ABS(Py_SIZE(w1)) <= Py_ABS(Py_SIZE(v1)). */
|
||||
|
||||
|
@ -3814,6 +3884,37 @@ l_divmod(PyLongObject *v, PyLongObject *w,
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* Compute
|
||||
* *pmod = v % w
|
||||
* pmod cannot be NULL. The caller owns a reference to pmod.
|
||||
*/
|
||||
static int
|
||||
l_mod(PyLongObject *v, PyLongObject *w, PyLongObject **pmod)
|
||||
{
|
||||
PyLongObject *mod;
|
||||
|
||||
assert(pmod);
|
||||
if (Py_ABS(Py_SIZE(v)) == 1 && Py_ABS(Py_SIZE(w)) == 1) {
|
||||
/* Fast path for single-digit longs */
|
||||
*pmod = (PyLongObject *)fast_mod(v, w);
|
||||
return -(*pmod == NULL);
|
||||
}
|
||||
if (long_rem(v, w, &mod) < 0)
|
||||
return -1;
|
||||
if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
|
||||
(Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
|
||||
PyLongObject *temp;
|
||||
temp = (PyLongObject *) long_add(mod, w);
|
||||
Py_DECREF(mod);
|
||||
mod = temp;
|
||||
if (mod == NULL)
|
||||
return -1;
|
||||
}
|
||||
*pmod = mod;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
long_div(PyObject *a, PyObject *b)
|
||||
{
|
||||
|
@ -4100,11 +4201,7 @@ long_mod(PyObject *a, PyObject *b)
|
|||
|
||||
CHECK_BINOP(a, b);
|
||||
|
||||
if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) {
|
||||
return fast_mod((PyLongObject*)a, (PyLongObject*)b);
|
||||
}
|
||||
|
||||
if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0)
|
||||
if (l_mod((PyLongObject*)a, (PyLongObject*)b, &mod) < 0)
|
||||
mod = NULL;
|
||||
return (PyObject *)mod;
|
||||
}
|
||||
|
@ -4333,10 +4430,10 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
|
|||
while the "large exponent" case multiplies directly by base 31
|
||||
times. It can be unboundedly faster to multiply by
|
||||
base % modulus instead.
|
||||
We could _always_ do this reduction, but l_divmod() isn't cheap,
|
||||
We could _always_ do this reduction, but l_mod() isn't cheap,
|
||||
so we only do it when it buys something. */
|
||||
if (Py_SIZE(a) < 0 || Py_SIZE(a) > Py_SIZE(c)) {
|
||||
if (l_divmod(a, c, NULL, &temp) < 0)
|
||||
if (l_mod(a, c, &temp) < 0)
|
||||
goto Error;
|
||||
Py_DECREF(a);
|
||||
a = temp;
|
||||
|
@ -4357,7 +4454,7 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
|
|||
#define REDUCE(X) \
|
||||
do { \
|
||||
if (c != NULL) { \
|
||||
if (l_divmod(X, c, NULL, &temp) < 0) \
|
||||
if (l_mod(X, c, &temp) < 0) \
|
||||
goto Error; \
|
||||
Py_XDECREF(X); \
|
||||
X = temp; \
|
||||
|
@ -5022,7 +5119,7 @@ _PyLong_GCD(PyObject *aarg, PyObject *barg)
|
|||
|
||||
if (k == 0) {
|
||||
/* no progress; do a Euclidean step */
|
||||
if (l_divmod(a, b, NULL, &r) < 0)
|
||||
if (l_mod(a, b, &r) < 0)
|
||||
goto error;
|
||||
Py_DECREF(a);
|
||||
a = b;
|
||||
|
|
Loading…
Reference in New Issue