gh-109218: Improve documentation for the complex() constructor (GH-119687)

* Remove the equivalence with real+imag*1j which can be incorrect in corner
  cases (non-finite numbers, the sign of zeroes).
* Separately document the three roles of the constructor: parsing a string,
  converting a number, and constructing a complex from components.
* Document positional-only parameters of complex(), float(), int() and bool()
  as positional-only.
* Add examples for complex() and int().
* Specify the grammar of the string for complex().
* Improve the grammar of the string for float().
* Describe more explicitly the behavior when real and/or imag arguments are
  complex numbers. (This will be deprecated in future.)
This commit is contained in:
Serhiy Storchaka 2024-05-30 23:20:07 +03:00 committed by GitHub
parent 1c04c63ced
commit ec1ba26460
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 135 additions and 63 deletions

View File

@ -43,10 +43,7 @@ Conversions to and from polar coordinates
A Python complex number ``z`` is stored internally using *rectangular*
or *Cartesian* coordinates. It is completely determined by its *real
part* ``z.real`` and its *imaginary part* ``z.imag``. In other
words::
z == z.real + z.imag*1j
part* ``z.real`` and its *imaginary part* ``z.imag``.
*Polar coordinates* give an alternative way to represent a complex
number. In polar coordinates, a complex number *z* is defined by the
@ -90,7 +87,7 @@ rectangular coordinates to polar coordinates and back.
.. function:: rect(r, phi)
Return the complex number *x* with polar coordinates *r* and *phi*.
Equivalent to ``r * (math.cos(phi) + math.sin(phi)*1j)``.
Equivalent to ``complex(r * math.cos(phi), r * math.sin(phi))``.
Power and logarithmic functions

View File

@ -141,10 +141,11 @@ are always available. They are listed here in alphabetical order.
See also :func:`format` for more information.
.. class:: bool(x=False)
.. class:: bool(object=False, /)
Return a Boolean value, i.e. one of ``True`` or ``False``. *x* is converted
using the standard :ref:`truth testing procedure <truth>`. If *x* is false
Return a Boolean value, i.e. one of ``True`` or ``False``. The argument
is converted using the standard :ref:`truth testing procedure <truth>`.
If the argument is false
or omitted, this returns ``False``; otherwise, it returns ``True``. The
:class:`bool` class is a subclass of :class:`int` (see :ref:`typesnumeric`).
It cannot be subclassed further. Its only instances are ``False`` and
@ -153,7 +154,7 @@ are always available. They are listed here in alphabetical order.
.. index:: pair: Boolean; type
.. versionchanged:: 3.7
*x* is now a positional-only parameter.
The parameter is now positional-only.
.. function:: breakpoint(*args, **kws)
@ -371,29 +372,73 @@ are always available. They are listed here in alphabetical order.
support for top-level ``await``, ``async for``, and ``async with``.
.. class:: complex(real=0, imag=0)
complex(string)
.. class:: complex(number=0, /)
complex(string, /)
complex(real=0, imag=0)
Return a complex number with the value *real* + *imag*\*1j or convert a string
or number to a complex number. If the first parameter is a string, it will
be interpreted as a complex number and the function must be called without a
second parameter. The second parameter can never be a string. Each argument
may be any numeric type (including complex). If *imag* is omitted, it
defaults to zero and the constructor serves as a numeric conversion like
:class:`int` and :class:`float`. If both arguments are omitted, returns
``0j``.
Convert a single string or number to a complex number, or create a
complex number from real and imaginary parts.
Examples:
.. doctest::
>>> complex('+1.23')
(1.23+0j)
>>> complex('-4.5j')
-4.5j
>>> complex('-1.23+4.5j')
(-1.23+4.5j)
>>> complex('\t( -1.23+4.5J )\n')
(-1.23+4.5j)
>>> complex('-Infinity+NaNj')
(-inf+nanj)
>>> complex(1.23)
(1.23+0j)
>>> complex(imag=-4.5)
-4.5j
>>> complex(-1.23, 4.5)
(-1.23+4.5j)
If the argument is a string, it must contain either a real part (in the
same format as for :func:`float`) or an imaginary part (in the same
format but with a ``'j'`` or ``'J'`` suffix), or both real and imaginary
parts (the sign of the imaginary part is mandatory in this case).
The string can optionally be surrounded by whitespaces and the round
parentheses ``'('`` and ``')'``, which are ignored.
The string must not contain whitespace between ``'+'``, ``'-'``, the
``'j'`` or ``'J'`` suffix, and the decimal number.
For example, ``complex('1+2j')`` is fine, but ``complex('1 + 2j')`` raises
:exc:`ValueError`.
More precisely, the input must conform to the :token:`~float:complexvalue`
production rule in the following grammar, after parentheses and leading and
trailing whitespace characters are removed:
.. productionlist:: float
complexvalue: `floatvalue` |
: `floatvalue` ("j" | "J") |
: `floatvalue` `sign` `absfloatvalue` ("j" | "J")
If the argument is a number, the constructor serves as a numeric
conversion like :class:`int` and :class:`float`.
For a general Python object ``x``, ``complex(x)`` delegates to
``x.__complex__()``. If :meth:`~object.__complex__` is not defined then it falls back
to :meth:`~object.__float__`. If :meth:`!__float__` is not defined then it falls back
``x.__complex__()``.
If :meth:`~object.__complex__` is not defined then it falls back
to :meth:`~object.__float__`.
If :meth:`!__float__` is not defined then it falls back
to :meth:`~object.__index__`.
.. note::
If two arguments are provided or keyword arguments are used, each argument
may be any numeric type (including complex).
If both arguments are real numbers, return a complex number with the real
component *real* and the imaginary component *imag*.
If both arguments are complex numbers, return a complex number with the real
component ``real.real-imag.imag`` and the imaginary component
``real.imag+imag.real``.
If one of arguments is a real number, only its real component is used in
the above expressions.
When converting from a string, the string must not contain whitespace
around the central ``+`` or ``-`` operator. For example,
``complex('1+2j')`` is fine, but ``complex('1 + 2j')`` raises
:exc:`ValueError`.
If all arguments are omitted, returns ``0j``.
The complex type is described in :ref:`typesnumeric`.
@ -682,21 +727,38 @@ are always available. They are listed here in alphabetical order.
elements of *iterable* for which *function* is false.
.. class:: float(x=0.0)
.. class:: float(number=0.0, /)
float(string, /)
.. index::
single: NaN
single: Infinity
Return a floating point number constructed from a number or string *x*.
Return a floating point number constructed from a number or a string.
Examples:
.. doctest::
>>> float('+1.23')
1.23
>>> float(' -12345\n')
-12345.0
>>> float('1e-003')
0.001
>>> float('+1E6')
1000000.0
>>> float('-Infinity')
-inf
If the argument is a string, it should contain a decimal number, optionally
preceded by a sign, and optionally embedded in whitespace. The optional
sign may be ``'+'`` or ``'-'``; a ``'+'`` sign has no effect on the value
produced. The argument may also be a string representing a NaN
(not-a-number), or positive or negative infinity. More precisely, the
input must conform to the ``floatvalue`` production rule in the following
grammar, after leading and trailing whitespace characters are removed:
(not-a-number), or positive or negative infinity.
More precisely, the input must conform to the :token:`~float:floatvalue`
production rule in the following grammar, after leading and trailing
whitespace characters are removed:
.. productionlist:: float
sign: "+" | "-"
@ -705,9 +767,10 @@ are always available. They are listed here in alphabetical order.
digit: <a Unicode decimal digit, i.e. characters in Unicode general category Nd>
digitpart: `digit` (["_"] `digit`)*
number: [`digitpart`] "." `digitpart` | `digitpart` ["."]
exponent: ("e" | "E") ["+" | "-"] `digitpart`
floatnumber: number [`exponent`]
floatvalue: [`sign`] (`floatnumber` | `infinity` | `nan`)
exponent: ("e" | "E") [`sign`] `digitpart`
floatnumber: `number` [`exponent`]
absfloatvalue: `floatnumber` | `infinity` | `nan`
floatvalue: [`sign`] `absfloatvalue`
Case is not significant, so, for example, "inf", "Inf", "INFINITY", and
"iNfINity" are all acceptable spellings for positive infinity.
@ -723,26 +786,13 @@ are always available. They are listed here in alphabetical order.
If no argument is given, ``0.0`` is returned.
Examples::
>>> float('+1.23')
1.23
>>> float(' -12345\n')
-12345.0
>>> float('1e-003')
0.001
>>> float('+1E6')
1000000.0
>>> float('-Infinity')
-inf
The float type is described in :ref:`typesnumeric`.
.. versionchanged:: 3.6
Grouping digits with underscores as in code literals is allowed.
.. versionchanged:: 3.7
*x* is now a positional-only parameter.
The parameter is now positional-only.
.. versionchanged:: 3.8
Falls back to :meth:`~object.__index__` if :meth:`~object.__float__` is not defined.
@ -926,17 +976,36 @@ are always available. They are listed here in alphabetical order.
with the result after successfully reading input.
.. class:: int(x=0)
int(x, base=10)
.. class:: int(number=0, /)
int(string, /, base=10)
Return an integer object constructed from a number or string *x*, or return
``0`` if no arguments are given. If *x* defines :meth:`~object.__int__`,
``int(x)`` returns ``x.__int__()``. If *x* defines :meth:`~object.__index__`,
it returns ``x.__index__()``. If *x* defines :meth:`~object.__trunc__`,
Return an integer object constructed from a number or a string, or return
``0`` if no arguments are given.
Examples:
.. doctest::
>>> int(123.45)
123
>>> int('123')
123
>>> int(' -12_345\n')
-12345
>>> int('FACE', 16)
64206
>>> int('0xface', 0)
64206
>>> int('01110011', base=2)
115
If the argument defines :meth:`~object.__int__`,
``int(x)`` returns ``x.__int__()``. If the argument defines :meth:`~object.__index__`,
it returns ``x.__index__()``. If the argument defines :meth:`~object.__trunc__`,
it returns ``x.__trunc__()``.
For floating point numbers, this truncates towards zero.
If *x* is not a number or if *base* is given, then *x* must be a string,
If the argument is not a number or if *base* is given, then it must be a string,
:class:`bytes`, or :class:`bytearray` instance representing an integer
in radix *base*. Optionally, the string can be preceded by ``+`` or ``-``
(with no space in between), have leading zeros, be surrounded by whitespace,
@ -966,7 +1035,7 @@ are always available. They are listed here in alphabetical order.
Grouping digits with underscores as in code literals is allowed.
.. versionchanged:: 3.7
*x* is now a positional-only parameter.
The first parameter is now positional-only.
.. versionchanged:: 3.8
Falls back to :meth:`~object.__index__` if :meth:`~object.__int__` is not defined.
@ -977,7 +1046,7 @@ are always available. They are listed here in alphabetical order.
.. versionchanged:: 3.11
:class:`int` string inputs and string representations can be limited to
help avoid denial of service attacks. A :exc:`ValueError` is raised when
the limit is exceeded while converting a string *x* to an :class:`int` or
the limit is exceeded while converting a string to an :class:`int` or
when converting an :class:`int` into a string would exceed the limit.
See the :ref:`integer string conversion length limitation
<int_max_str_digits>` documentation.

View File

@ -94,9 +94,12 @@ PyDoc_STRVAR(complex_new__doc__,
"complex(real=0, imag=0)\n"
"--\n"
"\n"
"Create a complex number from a real part and an optional imaginary part.\n"
"Create a complex number from a string or numbers.\n"
"\n"
"This is equivalent to (real + imag*1j) where imag defaults to 0.");
"If a string is given, parse it as a complex number.\n"
"If a single number is given, convert it to a complex number.\n"
"If the \'real\' or \'imag\' arguments are given, create a complex number\n"
"with the specified real and imaginary components.");
static PyObject *
complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i);
@ -157,4 +160,4 @@ skip_optional_pos:
exit:
return return_value;
}
/*[clinic end generated code: output=04e6261649967b30 input=a9049054013a1b77]*/
/*[clinic end generated code: output=295ecfd71389d7fe input=a9049054013a1b77]*/

View File

@ -911,14 +911,17 @@ complex.__new__ as complex_new
real as r: object(c_default="NULL") = 0
imag as i: object(c_default="NULL") = 0
Create a complex number from a real part and an optional imaginary part.
Create a complex number from a string or numbers.
This is equivalent to (real + imag*1j) where imag defaults to 0.
If a string is given, parse it as a complex number.
If a single number is given, convert it to a complex number.
If the 'real' or 'imag' arguments are given, create a complex number
with the specified real and imaginary components.
[clinic start generated code]*/
static PyObject *
complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i)
/*[clinic end generated code: output=b6c7dd577b537dc1 input=f4c667f2596d4fd1]*/
/*[clinic end generated code: output=b6c7dd577b537dc1 input=ff4268dc540958a4]*/
{
PyObject *tmp;
PyNumberMethods *nbr, *nbi = NULL;