Do not use explicit inheritance from object in the documentation. (GH-13936)

This commit is contained in:
Serhiy Storchaka 2019-06-10 13:35:52 +03:00 committed by GitHub
parent c879ff247a
commit e042a4553e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 14 additions and 14 deletions

View File

@ -145,7 +145,7 @@ print a message for each get or set. Overriding :meth:`__getattribute__` is
alternate approach that could do this for every attribute. However, this
descriptor is useful for monitoring just a few chosen attributes::
class RevealAccess(object):
class RevealAccess:
"""A data descriptor that sets and returns values
normally and prints a message logging their access.
"""
@ -162,7 +162,7 @@ descriptor is useful for monitoring just a few chosen attributes::
print('Updating', self.name)
self.val = val
>>> class MyClass(object):
>>> class MyClass:
... x = RevealAccess(10, 'var "x"')
... y = 5
...
@ -194,7 +194,7 @@ triggers function calls upon access to an attribute. Its signature is::
The documentation shows a typical use to define a managed attribute ``x``::
class C(object):
class C:
def getx(self): return self.__x
def setx(self, value): self.__x = value
def delx(self): del self.__x
@ -203,7 +203,7 @@ The documentation shows a typical use to define a managed attribute ``x``::
To see how :func:`property` is implemented in terms of the descriptor protocol,
here is a pure Python equivalent::
class Property(object):
class Property:
"Emulate PyProperty_Type() in Objects/descrobject.c"
def __init__(self, fget=None, fset=None, fdel=None, doc=None):
@ -250,7 +250,7 @@ to be recalculated on every access; however, the programmer does not want to
affect existing client code accessing the attribute directly. The solution is
to wrap access to the value attribute in a property data descriptor::
class Cell(object):
class Cell:
. . .
def getvalue(self):
"Recalculate the cell before returning value"
@ -277,7 +277,7 @@ binding methods during attribute access. This means that all functions are
non-data descriptors which return bound methods when they are invoked from an
object. In pure Python, it works like this::
class Function(object):
class Function:
. . .
def __get__(self, obj, objtype=None):
"Simulate func_descr_get() in Objects/funcobject.c"
@ -287,7 +287,7 @@ object. In pure Python, it works like this::
Running the interpreter shows how the function descriptor works in practice::
>>> class D(object):
>>> class D:
... def f(self, x):
... return x
...
@ -367,7 +367,7 @@ It can be called either from an object or the class: ``s.erf(1.5) --> .9332`` o
Since staticmethods return the underlying function with no changes, the example
calls are unexciting::
>>> class E(object):
>>> class E:
... def f(x):
... print(x)
... f = staticmethod(f)
@ -380,7 +380,7 @@ calls are unexciting::
Using the non-data descriptor protocol, a pure Python version of
:func:`staticmethod` would look like this::
class StaticMethod(object):
class StaticMethod:
"Emulate PyStaticMethod_Type() in Objects/funcobject.c"
def __init__(self, f):
@ -393,7 +393,7 @@ Unlike static methods, class methods prepend the class reference to the
argument list before calling the function. This format is the same
for whether the caller is an object or a class::
>>> class E(object):
>>> class E:
... def f(klass, x):
... return klass.__name__, x
... f = classmethod(f)
@ -410,7 +410,7 @@ is to create alternate class constructors. In Python 2.3, the classmethod
:func:`dict.fromkeys` creates a new dictionary from a list of keys. The pure
Python equivalent is::
class Dict(object):
class Dict:
. . .
def fromkeys(klass, iterable, value=None):
"Emulate dict_fromkeys() in Objects/dictobject.c"
@ -428,7 +428,7 @@ Now a new dictionary of unique keys can be constructed like this::
Using the non-data descriptor protocol, a pure Python version of
:func:`classmethod` would look like this::
class ClassMethod(object):
class ClassMethod:
"Emulate PyClassMethod_Type() in Objects/funcobject.c"
def __init__(self, f):

View File

@ -49,7 +49,7 @@ The example below would like to show how to register a pickle function and how
it will be used:
>>> import copyreg, copy, pickle
>>> class C(object):
>>> class C:
... def __init__(self, a):
... self.a = a
...

View File

@ -275,7 +275,7 @@ The :mod:`functools` module defines the following functions:
Example::
>>> class Cell(object):
>>> class Cell:
... def __init__(self):
... self._alive = False
... @property