Add rational.Rational as an implementation of numbers.Rational with infinite

precision. This has been discussed at http://bugs.python.org/issue1682. It's
useful primarily for teaching, but it also demonstrates how to implement a
member of the numeric tower, including fallbacks for mixed-mode arithmetic.

I expect to write a couple more patches in this area:
 * Rational.from_decimal()
 * Rational.trim/approximate() (maybe with different names)
 * Maybe remove the parentheses from Rational.__str__()
 * Maybe rename one of the Rational classes
 * Maybe make Rational('3/2') work.
This commit is contained in:
Jeffrey Yasskin 2008-01-15 07:46:24 +00:00
parent ca9c6e433c
commit d7b00334f3
6 changed files with 777 additions and 313 deletions

View File

@ -1,310 +0,0 @@
'''\
This module implements rational numbers.
The entry point of this module is the function
rat(numerator, denominator)
If either numerator or denominator is of an integral or rational type,
the result is a rational number, else, the result is the simplest of
the types float and complex which can hold numerator/denominator.
If denominator is omitted, it defaults to 1.
Rational numbers can be used in calculations with any other numeric
type. The result of the calculation will be rational if possible.
There is also a test function with calling sequence
test()
The documentation string of the test function contains the expected
output.
'''
# Contributed by Sjoerd Mullender
from types import *
def gcd(a, b):
'''Calculate the Greatest Common Divisor.'''
while b:
a, b = b, a%b
return a
def rat(num, den = 1):
# must check complex before float
if isinstance(num, complex) or isinstance(den, complex):
# numerator or denominator is complex: return a complex
return complex(num) / complex(den)
if isinstance(num, float) or isinstance(den, float):
# numerator or denominator is float: return a float
return float(num) / float(den)
# otherwise return a rational
return Rat(num, den)
class Rat:
'''This class implements rational numbers.'''
def __init__(self, num, den = 1):
if den == 0:
raise ZeroDivisionError, 'rat(x, 0)'
# normalize
# must check complex before float
if (isinstance(num, complex) or
isinstance(den, complex)):
# numerator or denominator is complex:
# normalized form has denominator == 1+0j
self.__num = complex(num) / complex(den)
self.__den = complex(1)
return
if isinstance(num, float) or isinstance(den, float):
# numerator or denominator is float:
# normalized form has denominator == 1.0
self.__num = float(num) / float(den)
self.__den = 1.0
return
if (isinstance(num, self.__class__) or
isinstance(den, self.__class__)):
# numerator or denominator is rational
new = num / den
if not isinstance(new, self.__class__):
self.__num = new
if isinstance(new, complex):
self.__den = complex(1)
else:
self.__den = 1.0
else:
self.__num = new.__num
self.__den = new.__den
else:
# make sure numerator and denominator don't
# have common factors
# this also makes sure that denominator > 0
g = gcd(num, den)
self.__num = num / g
self.__den = den / g
# try making numerator and denominator of IntType if they fit
try:
numi = int(self.__num)
deni = int(self.__den)
except (OverflowError, TypeError):
pass
else:
if self.__num == numi and self.__den == deni:
self.__num = numi
self.__den = deni
def __repr__(self):
return 'Rat(%s,%s)' % (self.__num, self.__den)
def __str__(self):
if self.__den == 1:
return str(self.__num)
else:
return '(%s/%s)' % (str(self.__num), str(self.__den))
# a + b
def __add__(a, b):
try:
return rat(a.__num * b.__den + b.__num * a.__den,
a.__den * b.__den)
except OverflowError:
return rat(long(a.__num) * long(b.__den) +
long(b.__num) * long(a.__den),
long(a.__den) * long(b.__den))
def __radd__(b, a):
return Rat(a) + b
# a - b
def __sub__(a, b):
try:
return rat(a.__num * b.__den - b.__num * a.__den,
a.__den * b.__den)
except OverflowError:
return rat(long(a.__num) * long(b.__den) -
long(b.__num) * long(a.__den),
long(a.__den) * long(b.__den))
def __rsub__(b, a):
return Rat(a) - b
# a * b
def __mul__(a, b):
try:
return rat(a.__num * b.__num, a.__den * b.__den)
except OverflowError:
return rat(long(a.__num) * long(b.__num),
long(a.__den) * long(b.__den))
def __rmul__(b, a):
return Rat(a) * b
# a / b
def __div__(a, b):
try:
return rat(a.__num * b.__den, a.__den * b.__num)
except OverflowError:
return rat(long(a.__num) * long(b.__den),
long(a.__den) * long(b.__num))
def __rdiv__(b, a):
return Rat(a) / b
# a % b
def __mod__(a, b):
div = a / b
try:
div = int(div)
except OverflowError:
div = long(div)
return a - b * div
def __rmod__(b, a):
return Rat(a) % b
# a ** b
def __pow__(a, b):
if b.__den != 1:
if isinstance(a.__num, complex):
a = complex(a)
else:
a = float(a)
if isinstance(b.__num, complex):
b = complex(b)
else:
b = float(b)
return a ** b
try:
return rat(a.__num ** b.__num, a.__den ** b.__num)
except OverflowError:
return rat(long(a.__num) ** b.__num,
long(a.__den) ** b.__num)
def __rpow__(b, a):
return Rat(a) ** b
# -a
def __neg__(a):
try:
return rat(-a.__num, a.__den)
except OverflowError:
# a.__num == sys.maxint
return rat(-long(a.__num), a.__den)
# abs(a)
def __abs__(a):
return rat(abs(a.__num), a.__den)
# int(a)
def __int__(a):
return int(a.__num / a.__den)
# long(a)
def __long__(a):
return long(a.__num) / long(a.__den)
# float(a)
def __float__(a):
return float(a.__num) / float(a.__den)
# complex(a)
def __complex__(a):
return complex(a.__num) / complex(a.__den)
# cmp(a,b)
def __cmp__(a, b):
diff = Rat(a - b)
if diff.__num < 0:
return -1
elif diff.__num > 0:
return 1
else:
return 0
def __rcmp__(b, a):
return cmp(Rat(a), b)
# a != 0
def __nonzero__(a):
return a.__num != 0
# coercion
def __coerce__(a, b):
return a, Rat(b)
def test():
'''\
Test function for rat module.
The expected output is (module some differences in floating
precission):
-1
-1
0 0L 0.1 (0.1+0j)
[Rat(1,2), Rat(-3,10), Rat(1,25), Rat(1,4)]
[Rat(-3,10), Rat(1,25), Rat(1,4), Rat(1,2)]
0
(11/10)
(11/10)
1.1
OK
2 1.5 (3/2) (1.5+1.5j) (15707963/5000000)
2 2 2.0 (2+0j)
4 0 4 1 4 0
3.5 0.5 3.0 1.33333333333 2.82842712475 1
(7/2) (1/2) 3 (4/3) 2.82842712475 1
(3.5+1.5j) (0.5-1.5j) (3+3j) (0.666666666667-0.666666666667j) (1.43248815986+2.43884761145j) 1
1.5 1 1.5 (1.5+0j)
3.5 -0.5 3.0 0.75 2.25 -1
3.0 0.0 2.25 1.0 1.83711730709 0
3.0 0.0 2.25 1.0 1.83711730709 1
(3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1
(3/2) 1 1.5 (1.5+0j)
(7/2) (-1/2) 3 (3/4) (9/4) -1
3.0 0.0 2.25 1.0 1.83711730709 -1
3 0 (9/4) 1 1.83711730709 0
(3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1
(1.5+1.5j) (1.5+1.5j)
(3.5+1.5j) (-0.5+1.5j) (3+3j) (0.75+0.75j) 4.5j -1
(3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1
(3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1
(3+3j) 0j 4.5j (1+0j) (-0.638110484918+0.705394566962j) 0
'''
print rat(-1L, 1)
print rat(1, -1)
a = rat(1, 10)
print int(a), long(a), float(a), complex(a)
b = rat(2, 5)
l = [a+b, a-b, a*b, a/b]
print l
l.sort()
print l
print rat(0, 1)
print a+1
print a+1L
print a+1.0
try:
print rat(1, 0)
raise SystemError, 'should have been ZeroDivisionError'
except ZeroDivisionError:
print 'OK'
print rat(2), rat(1.5), rat(3, 2), rat(1.5+1.5j), rat(31415926,10000000)
list = [2, 1.5, rat(3,2), 1.5+1.5j]
for i in list:
print i,
if not isinstance(i, complex):
print int(i), float(i),
print complex(i)
print
for j in list:
print i + j, i - j, i * j, i / j, i ** j,
if not (isinstance(i, complex) or
isinstance(j, complex)):
print cmp(i, j)
print
if __name__ == '__main__':
test()

View File

@ -21,6 +21,7 @@ The following modules are documented in this chapter:
math.rst
cmath.rst
decimal.rst
rational.rst
random.rst
itertools.rst
functools.rst

65
Doc/library/rational.rst Normal file
View File

@ -0,0 +1,65 @@
:mod:`rational` --- Rational numbers
====================================
.. module:: rational
:synopsis: Rational numbers.
.. moduleauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
.. sectionauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
.. versionadded:: 2.6
The :mod:`rational` module defines an immutable, infinite-precision
Rational number class.
.. class:: Rational(numerator=0, denominator=1)
Rational(other_rational)
The first version requires that *numerator* and *denominator* are
instances of :class:`numbers.Integral` and returns a new
``Rational`` representing ``numerator/denominator``. If
*denominator* is :const:`0`, raises a :exc:`ZeroDivisionError`. The
second version requires that *other_rational* is an instance of
:class:`numbers.Rational` and returns an instance of
:class:`Rational` with the same value.
Implements all of the methods and operations from
:class:`numbers.Rational` and is hashable.
.. method:: Rational.from_float(flt)
This classmethod constructs a :class:`Rational` representing the
exact value of *flt*, which must be a :class:`float`. Beware that
``Rational.from_float(0.3)`` is not the same value as ``Rational(3,
10)``
.. method:: Rational.__floor__()
Returns the greatest :class:`int` ``<= self``. Will be accessible
through :func:`math.floor` in Py3k.
.. method:: Rational.__ceil__()
Returns the least :class:`int` ``>= self``. Will be accessible
through :func:`math.ceil` in Py3k.
.. method:: Rational.__round__()
Rational.__round__(ndigits)
The first version returns the nearest :class:`int` to ``self``,
rounding half to even. The second version rounds ``self`` to the
nearest multiple of ``Rational(1, 10**ndigits)`` (logically, if
``ndigits`` is negative), again rounding half toward even. Will be
accessible through :func:`round` in Py3k.
.. seealso::
Module :mod:`numbers`
The abstract base classes making up the numeric tower.

View File

@ -5,6 +5,7 @@
TODO: Fill out more detailed documentation on the operators."""
from __future__ import division
from abc import ABCMeta, abstractmethod, abstractproperty
__all__ = ["Number", "Exact", "Inexact",
@ -63,7 +64,8 @@ class Complex(Number):
def __complex__(self):
"""Return a builtin complex instance. Called for complex(self)."""
def __bool__(self):
# Will be __bool__ in 3.0.
def __nonzero__(self):
"""True if self != 0. Called for bool(self)."""
return self != 0
@ -98,6 +100,7 @@ class Complex(Number):
"""-self"""
raise NotImplementedError
@abstractmethod
def __pos__(self):
"""+self"""
raise NotImplementedError
@ -122,12 +125,28 @@ class Complex(Number):
@abstractmethod
def __div__(self, other):
"""self / other; should promote to float or complex when necessary."""
"""self / other without __future__ division
May promote to float.
"""
raise NotImplementedError
@abstractmethod
def __rdiv__(self, other):
"""other / self"""
"""other / self without __future__ division"""
raise NotImplementedError
@abstractmethod
def __truediv__(self, other):
"""self / other with __future__ division.
Should promote to float when necessary.
"""
raise NotImplementedError
@abstractmethod
def __rtruediv__(self, other):
"""other / self with __future__ division"""
raise NotImplementedError
@abstractmethod

410
Lib/rational.py Executable file
View File

@ -0,0 +1,410 @@
# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
"""Rational, infinite-precision, real numbers."""
from __future__ import division
import math
import numbers
import operator
__all__ = ["Rational"]
RationalAbc = numbers.Rational
def _gcd(a, b):
"""Calculate the Greatest Common Divisor.
Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).
"""
while b:
a, b = b, a%b
return a
def _binary_float_to_ratio(x):
"""x -> (top, bot), a pair of ints s.t. x = top/bot.
The conversion is done exactly, without rounding.
bot > 0 guaranteed.
Some form of binary fp is assumed.
Pass NaNs or infinities at your own risk.
>>> _binary_float_to_ratio(10.0)
(10, 1)
>>> _binary_float_to_ratio(0.0)
(0, 1)
>>> _binary_float_to_ratio(-.25)
(-1, 4)
"""
if x == 0:
return 0, 1
f, e = math.frexp(x)
signbit = 1
if f < 0:
f = -f
signbit = -1
assert 0.5 <= f < 1.0
# x = signbit * f * 2**e exactly
# Suck up CHUNK bits at a time; 28 is enough so that we suck
# up all bits in 2 iterations for all known binary double-
# precision formats, and small enough to fit in an int.
CHUNK = 28
top = 0
# invariant: x = signbit * (top + f) * 2**e exactly
while f:
f = math.ldexp(f, CHUNK)
digit = trunc(f)
assert digit >> CHUNK == 0
top = (top << CHUNK) | digit
f = f - digit
assert 0.0 <= f < 1.0
e = e - CHUNK
assert top
# Add in the sign bit.
top = signbit * top
# now x = top * 2**e exactly; fold in 2**e
if e>0:
return (top * 2**e, 1)
else:
return (top, 2 ** -e)
class Rational(RationalAbc):
"""This class implements rational numbers.
Rational(8, 6) will produce a rational number equivalent to
4/3. Both arguments must be Integral. The numerator defaults to 0
and the denominator defaults to 1 so that Rational(3) == 3 and
Rational() == 0.
"""
__slots__ = ('_numerator', '_denominator')
def __init__(self, numerator=0, denominator=1):
if (not isinstance(numerator, numbers.Integral) and
isinstance(numerator, RationalAbc) and
denominator == 1):
# Handle copies from other rationals.
other_rational = numerator
numerator = other_rational.numerator
denominator = other_rational.denominator
if (not isinstance(numerator, numbers.Integral) or
not isinstance(denominator, numbers.Integral)):
raise TypeError("Rational(%(numerator)s, %(denominator)s):"
" Both arguments must be integral." % locals())
if denominator == 0:
raise ZeroDivisionError('Rational(%s, 0)' % numerator)
g = _gcd(numerator, denominator)
self._numerator = int(numerator // g)
self._denominator = int(denominator // g)
@classmethod
def from_float(cls, f):
"""Converts a float to a rational number, exactly."""
if not isinstance(f, float):
raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
(cls.__name__, f, type(f).__name__))
if math.isnan(f) or math.isinf(f):
raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
return cls(*_binary_float_to_ratio(f))
@property
def numerator(a):
return a._numerator
@property
def denominator(a):
return a._denominator
def __repr__(self):
"""repr(self)"""
return ('rational.Rational(%r,%r)' %
(self.numerator, self.denominator))
def __str__(self):
"""str(self)"""
if self.denominator == 1:
return str(self.numerator)
else:
return '(%s/%s)' % (self.numerator, self.denominator)
def _operator_fallbacks(monomorphic_operator, fallback_operator):
"""Generates forward and reverse operators given a purely-rational
operator and a function from the operator module.
Use this like:
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
"""
def forward(a, b):
if isinstance(b, RationalAbc):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)
elif isinstance(b, complex):
return fallback_operator(complex(a), b)
else:
return NotImplemented
forward.__name__ = '__' + fallback_operator.__name__ + '__'
forward.__doc__ = monomorphic_operator.__doc__
def reverse(b, a):
if isinstance(a, RationalAbc):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))
elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))
else:
return NotImplemented
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
reverse.__doc__ = monomorphic_operator.__doc__
return forward, reverse
def _add(a, b):
"""a + b"""
return Rational(a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
def _sub(a, b):
"""a - b"""
return Rational(a.numerator * b.denominator -
b.numerator * a.denominator,
a.denominator * b.denominator)
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
def _mul(a, b):
"""a * b"""
return Rational(a.numerator * b.numerator, a.denominator * b.denominator)
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
def _div(a, b):
"""a / b"""
return Rational(a.numerator * b.denominator,
a.denominator * b.numerator)
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
__div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
@classmethod
def _floordiv(cls, a, b):
div = a / b
if isinstance(div, RationalAbc):
# trunc(math.floor(div)) doesn't work if the rational is
# more precise than a float because the intermediate
# rounding may cross an integer boundary.
return div.numerator // div.denominator
else:
return math.floor(div)
def __floordiv__(a, b):
"""a // b"""
# Will be math.floor(a / b) in 3.0.
return a._floordiv(a, b)
def __rfloordiv__(b, a):
"""a // b"""
# Will be math.floor(a / b) in 3.0.
return b._floordiv(a, b)
@classmethod
def _mod(cls, a, b):
div = a // b
return a - b * div
def __mod__(a, b):
"""a % b"""
return a._mod(a, b)
def __rmod__(b, a):
"""a % b"""
return b._mod(a, b)
def __pow__(a, b):
"""a ** b
If b is not an integer, the result will be a float or complex
since roots are generally irrational. If b is an integer, the
result will be rational.
"""
if isinstance(b, RationalAbc):
if b.denominator == 1:
power = b.numerator
if power >= 0:
return Rational(a.numerator ** power,
a.denominator ** power)
else:
return Rational(a.denominator ** -power,
a.numerator ** -power)
else:
# A fractional power will generally produce an
# irrational number.
return float(a) ** float(b)
else:
return float(a) ** b
def __rpow__(b, a):
"""a ** b"""
if b.denominator == 1 and b.numerator >= 0:
# If a is an int, keep it that way if possible.
return a ** b.numerator
if isinstance(a, RationalAbc):
return Rational(a.numerator, a.denominator) ** b
if b.denominator == 1:
return a ** b.numerator
return a ** float(b)
def __pos__(a):
"""+a: Coerces a subclass instance to Rational"""
return Rational(a.numerator, a.denominator)
def __neg__(a):
"""-a"""
return Rational(-a.numerator, a.denominator)
def __abs__(a):
"""abs(a)"""
return Rational(abs(a.numerator), a.denominator)
def __trunc__(a):
"""trunc(a)"""
if a.numerator < 0:
return -(-a.numerator // a.denominator)
else:
return a.numerator // a.denominator
def __floor__(a):
"""Will be math.floor(a) in 3.0."""
return a.numerator // a.denominator
def __ceil__(a):
"""Will be math.ceil(a) in 3.0."""
# The negations cleverly convince floordiv to return the ceiling.
return -(-a.numerator // a.denominator)
def __round__(self, ndigits=None):
"""Will be round(self, ndigits) in 3.0.
Rounds half toward even.
"""
if ndigits is None:
floor, remainder = divmod(self.numerator, self.denominator)
if remainder * 2 < self.denominator:
return floor
elif remainder * 2 > self.denominator:
return floor + 1
# Deal with the half case:
elif floor % 2 == 0:
return floor
else:
return floor + 1
shift = 10**abs(ndigits)
# See _operator_fallbacks.forward to check that the results of
# these operations will always be Rational and therefore have
# __round__().
if ndigits > 0:
return Rational((self * shift).__round__(), shift)
else:
return Rational((self / shift).__round__() * shift)
def __hash__(self):
"""hash(self)
Tricky because values that are exactly representable as a
float must have the same hash as that float.
"""
if self.denominator == 1:
# Get integers right.
return hash(self.numerator)
# Expensive check, but definitely correct.
if self == float(self):
return hash(float(self))
else:
# Use tuple's hash to avoid a high collision rate on
# simple fractions.
return hash((self.numerator, self.denominator))
def __eq__(a, b):
"""a == b"""
if isinstance(b, RationalAbc):
return (a.numerator == b.numerator and
a.denominator == b.denominator)
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
return a == a.from_float(b)
else:
# XXX: If b.__eq__ is implemented like this method, it may
# give the wrong answer after float(a) changes a's
# value. Better ways of doing this are welcome.
return float(a) == b
def _subtractAndCompareToZero(a, b, op):
"""Helper function for comparison operators.
Subtracts b from a, exactly if possible, and compares the
result with 0 using op, in such a way that the comparison
won't recurse. If the difference raises a TypeError, returns
NotImplemented instead.
"""
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
b = a.from_float(b)
try:
# XXX: If b <: Real but not <: RationalAbc, this is likely
# to fall back to a float. If the actual values differ by
# less than MIN_FLOAT, this could falsely call them equal,
# which would make <= inconsistent with ==. Better ways of
# doing this are welcome.
diff = a - b
except TypeError:
return NotImplemented
if isinstance(diff, RationalAbc):
return op(diff.numerator, 0)
return op(diff, 0)
def __lt__(a, b):
"""a < b"""
return a._subtractAndCompareToZero(b, operator.lt)
def __gt__(a, b):
"""a > b"""
return a._subtractAndCompareToZero(b, operator.gt)
def __le__(a, b):
"""a <= b"""
return a._subtractAndCompareToZero(b, operator.le)
def __ge__(a, b):
"""a >= b"""
return a._subtractAndCompareToZero(b, operator.ge)
def __nonzero__(a):
"""a != 0"""
return a.numerator != 0

279
Lib/test/test_rational.py Normal file
View File

@ -0,0 +1,279 @@
"""Tests for Lib/rational.py."""
from decimal import Decimal
from test.test_support import run_unittest, verbose
import math
import operator
import rational
import unittest
R = rational.Rational
def _components(r):
return (r.numerator, r.denominator)
class RationalTest(unittest.TestCase):
def assertTypedEquals(self, expected, actual):
"""Asserts that both the types and values are the same."""
self.assertEquals(type(expected), type(actual))
self.assertEquals(expected, actual)
def assertRaisesMessage(self, exc_type, message,
callable, *args, **kwargs):
"""Asserts that callable(*args, **kwargs) raises exc_type(message)."""
try:
callable(*args, **kwargs)
except exc_type, e:
self.assertEquals(message, str(e))
else:
self.fail("%s not raised" % exc_type.__name__)
def testInit(self):
self.assertEquals((0, 1), _components(R()))
self.assertEquals((7, 1), _components(R(7)))
self.assertEquals((7, 3), _components(R(R(7, 3))))
self.assertEquals((-1, 1), _components(R(-1, 1)))
self.assertEquals((-1, 1), _components(R(1, -1)))
self.assertEquals((1, 1), _components(R(-2, -2)))
self.assertEquals((1, 2), _components(R(5, 10)))
self.assertEquals((7, 15), _components(R(7, 15)))
self.assertEquals((10**23, 1), _components(R(10**23)))
self.assertRaisesMessage(ZeroDivisionError, "Rational(12, 0)",
R, 12, 0)
self.assertRaises(TypeError, R, 1.5)
self.assertRaises(TypeError, R, 1.5 + 3j)
def testFromFloat(self):
self.assertRaisesMessage(
TypeError, "Rational.from_float() only takes floats, not 3 (int)",
R.from_float, 3)
self.assertEquals((0, 1), _components(R.from_float(-0.0)))
self.assertEquals((10, 1), _components(R.from_float(10.0)))
self.assertEquals((-5, 2), _components(R.from_float(-2.5)))
self.assertEquals((99999999999999991611392, 1),
_components(R.from_float(1e23)))
self.assertEquals(float(10**23), float(R.from_float(1e23)))
self.assertEquals((3602879701896397, 1125899906842624),
_components(R.from_float(3.2)))
self.assertEquals(3.2, float(R.from_float(3.2)))
inf = 1e1000
nan = inf - inf
self.assertRaisesMessage(
TypeError, "Cannot convert inf to Rational.",
R.from_float, inf)
self.assertRaisesMessage(
TypeError, "Cannot convert -inf to Rational.",
R.from_float, -inf)
self.assertRaisesMessage(
TypeError, "Cannot convert nan to Rational.",
R.from_float, nan)
def testConversions(self):
self.assertTypedEquals(-1, trunc(R(-11, 10)))
self.assertTypedEquals(-2, R(-11, 10).__floor__())
self.assertTypedEquals(-1, R(-11, 10).__ceil__())
self.assertTypedEquals(-1, R(-10, 10).__ceil__())
self.assertTypedEquals(0, R(-1, 10).__round__())
self.assertTypedEquals(0, R(-5, 10).__round__())
self.assertTypedEquals(-2, R(-15, 10).__round__())
self.assertTypedEquals(-1, R(-7, 10).__round__())
self.assertEquals(False, bool(R(0, 1)))
self.assertEquals(True, bool(R(3, 2)))
self.assertTypedEquals(0.1, float(R(1, 10)))
# Check that __float__ isn't implemented by converting the
# numerator and denominator to float before dividing.
self.assertRaises(OverflowError, float, long('2'*400+'7'))
self.assertAlmostEquals(2.0/3,
float(R(long('2'*400+'7'), long('3'*400+'1'))))
self.assertTypedEquals(0.1+0j, complex(R(1,10)))
def testRound(self):
self.assertTypedEquals(R(-200), R(-150).__round__(-2))
self.assertTypedEquals(R(-200), R(-250).__round__(-2))
self.assertTypedEquals(R(30), R(26).__round__(-1))
self.assertTypedEquals(R(-2, 10), R(-15, 100).__round__(1))
self.assertTypedEquals(R(-2, 10), R(-25, 100).__round__(1))
def testArithmetic(self):
self.assertEquals(R(1, 2), R(1, 10) + R(2, 5))
self.assertEquals(R(-3, 10), R(1, 10) - R(2, 5))
self.assertEquals(R(1, 25), R(1, 10) * R(2, 5))
self.assertEquals(R(1, 4), R(1, 10) / R(2, 5))
self.assertTypedEquals(2, R(9, 10) // R(2, 5))
self.assertTypedEquals(10**23, R(10**23, 1) // R(1))
self.assertEquals(R(2, 3), R(-7, 3) % R(3, 2))
self.assertEquals(R(8, 27), R(2, 3) ** R(3))
self.assertEquals(R(27, 8), R(2, 3) ** R(-3))
self.assertTypedEquals(2.0, R(4) ** R(1, 2))
# Will return 1j in 3.0:
self.assertRaises(ValueError, pow, R(-1), R(1, 2))
def testMixedArithmetic(self):
self.assertTypedEquals(R(11, 10), R(1, 10) + 1)
self.assertTypedEquals(1.1, R(1, 10) + 1.0)
self.assertTypedEquals(1.1 + 0j, R(1, 10) + (1.0 + 0j))
self.assertTypedEquals(R(11, 10), 1 + R(1, 10))
self.assertTypedEquals(1.1, 1.0 + R(1, 10))
self.assertTypedEquals(1.1 + 0j, (1.0 + 0j) + R(1, 10))
self.assertTypedEquals(R(-9, 10), R(1, 10) - 1)
self.assertTypedEquals(-0.9, R(1, 10) - 1.0)
self.assertTypedEquals(-0.9 + 0j, R(1, 10) - (1.0 + 0j))
self.assertTypedEquals(R(9, 10), 1 - R(1, 10))
self.assertTypedEquals(0.9, 1.0 - R(1, 10))
self.assertTypedEquals(0.9 + 0j, (1.0 + 0j) - R(1, 10))
self.assertTypedEquals(R(1, 10), R(1, 10) * 1)
self.assertTypedEquals(0.1, R(1, 10) * 1.0)
self.assertTypedEquals(0.1 + 0j, R(1, 10) * (1.0 + 0j))
self.assertTypedEquals(R(1, 10), 1 * R(1, 10))
self.assertTypedEquals(0.1, 1.0 * R(1, 10))
self.assertTypedEquals(0.1 + 0j, (1.0 + 0j) * R(1, 10))
self.assertTypedEquals(R(1, 10), R(1, 10) / 1)
self.assertTypedEquals(0.1, R(1, 10) / 1.0)
self.assertTypedEquals(0.1 + 0j, R(1, 10) / (1.0 + 0j))
self.assertTypedEquals(R(10, 1), 1 / R(1, 10))
self.assertTypedEquals(10.0, 1.0 / R(1, 10))
self.assertTypedEquals(10.0 + 0j, (1.0 + 0j) / R(1, 10))
self.assertTypedEquals(0, R(1, 10) // 1)
self.assertTypedEquals(0.0, R(1, 10) // 1.0)
self.assertTypedEquals(10, 1 // R(1, 10))
self.assertTypedEquals(10**23, 10**22 // R(1, 10))
self.assertTypedEquals(10.0, 1.0 // R(1, 10))
self.assertTypedEquals(R(1, 10), R(1, 10) % 1)
self.assertTypedEquals(0.1, R(1, 10) % 1.0)
self.assertTypedEquals(R(0, 1), 1 % R(1, 10))
self.assertTypedEquals(0.0, 1.0 % R(1, 10))
# No need for divmod since we don't override it.
# ** has more interesting conversion rules.
self.assertTypedEquals(R(100, 1), R(1, 10) ** -2)
self.assertTypedEquals(R(100, 1), R(10, 1) ** 2)
self.assertTypedEquals(0.1, R(1, 10) ** 1.0)
self.assertTypedEquals(0.1 + 0j, R(1, 10) ** (1.0 + 0j))
self.assertTypedEquals(4 , 2 ** R(2, 1))
# Will return 1j in 3.0:
self.assertRaises(ValueError, pow, (-1), R(1, 2))
self.assertTypedEquals(R(1, 4) , 2 ** R(-2, 1))
self.assertTypedEquals(2.0 , 4 ** R(1, 2))
self.assertTypedEquals(0.25, 2.0 ** R(-2, 1))
self.assertTypedEquals(1.0 + 0j, (1.0 + 0j) ** R(1, 10))
def testMixingWithDecimal(self):
"""Decimal refuses mixed comparisons."""
self.assertRaisesMessage(
TypeError,
"unsupported operand type(s) for +: 'Rational' and 'Decimal'",
operator.add, R(3,11), Decimal('3.1415926'))
self.assertNotEquals(R(5, 2), Decimal('2.5'))
def testComparisons(self):
self.assertTrue(R(1, 2) < R(2, 3))
self.assertFalse(R(1, 2) < R(1, 2))
self.assertTrue(R(1, 2) <= R(2, 3))
self.assertTrue(R(1, 2) <= R(1, 2))
self.assertFalse(R(2, 3) <= R(1, 2))
self.assertTrue(R(1, 2) == R(1, 2))
self.assertFalse(R(1, 2) == R(1, 3))
def testMixedLess(self):
self.assertTrue(2 < R(5, 2))
self.assertFalse(2 < R(4, 2))
self.assertTrue(R(5, 2) < 3)
self.assertFalse(R(4, 2) < 2)
self.assertTrue(R(1, 2) < 0.6)
self.assertFalse(R(1, 2) < 0.4)
self.assertTrue(0.4 < R(1, 2))
self.assertFalse(0.5 < R(1, 2))
def testMixedLessEqual(self):
self.assertTrue(0.5 <= R(1, 2))
self.assertFalse(0.6 <= R(1, 2))
self.assertTrue(R(1, 2) <= 0.5)
self.assertFalse(R(1, 2) <= 0.4)
self.assertTrue(2 <= R(4, 2))
self.assertFalse(2 <= R(3, 2))
self.assertTrue(R(4, 2) <= 2)
self.assertFalse(R(5, 2) <= 2)
def testBigFloatComparisons(self):
# Because 10**23 can't be represented exactly as a float:
self.assertFalse(R(10**23) == float(10**23))
# The first test demonstrates why these are important.
self.assertFalse(1e23 < float(R(trunc(1e23) + 1)))
self.assertTrue(1e23 < R(trunc(1e23) + 1))
self.assertFalse(1e23 <= R(trunc(1e23) - 1))
self.assertTrue(1e23 > R(trunc(1e23) - 1))
self.assertFalse(1e23 >= R(trunc(1e23) + 1))
def testBigComplexComparisons(self):
self.assertFalse(R(10**23) == complex(10**23))
self.assertTrue(R(10**23) > complex(10**23))
self.assertFalse(R(10**23) <= complex(10**23))
def testMixedEqual(self):
self.assertTrue(0.5 == R(1, 2))
self.assertFalse(0.6 == R(1, 2))
self.assertTrue(R(1, 2) == 0.5)
self.assertFalse(R(1, 2) == 0.4)
self.assertTrue(2 == R(4, 2))
self.assertFalse(2 == R(3, 2))
self.assertTrue(R(4, 2) == 2)
self.assertFalse(R(5, 2) == 2)
def testStringification(self):
self.assertEquals("rational.Rational(7,3)", repr(R(7, 3)))
self.assertEquals("(7/3)", str(R(7, 3)))
self.assertEquals("7", str(R(7, 1)))
def testHash(self):
self.assertEquals(hash(2.5), hash(R(5, 2)))
self.assertEquals(hash(10**50), hash(R(10**50)))
self.assertNotEquals(hash(float(10**23)), hash(R(10**23)))
def testApproximatePi(self):
# Algorithm borrowed from
# http://docs.python.org/lib/decimal-recipes.html
three = R(3)
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while abs(s - lasts) > R(1, 10**9):
lasts = s
n, na = n+na, na+8
d, da = d+da, da+32
t = (t * n) / d
s += t
self.assertAlmostEquals(math.pi, s)
def testApproximateCos1(self):
# Algorithm borrowed from
# http://docs.python.org/lib/decimal-recipes.html
x = R(1)
i, lasts, s, fact, num, sign = 0, 0, R(1), 1, 1, 1
while abs(s - lasts) > R(1, 10**9):
lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign
self.assertAlmostEquals(math.cos(1), s)
def test_main():
run_unittest(RationalTest)
if __name__ == '__main__':
test_main()