gh-121149: improve accuracy of builtin sum() for complex inputs (gh-121176)

This commit is contained in:
Sergey B Kirpichev 2024-07-05 18:01:05 +03:00 committed by GitHub
parent cecd6012b0
commit d4faa7bd32
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 120 additions and 26 deletions

View File

@ -1934,6 +1934,10 @@ are always available. They are listed here in alphabetical order.
.. versionchanged:: 3.12 Summation of floats switched to an algorithm
that gives higher accuracy and better commutativity on most builds.
.. versionchanged:: 3.14
Added specialization for summation of complexes,
using same algorithm as for summation of floats.
.. class:: super()
super(type, object_or_type=None)

View File

@ -1768,6 +1768,11 @@ class BuiltinTest(unittest.TestCase):
sum(([x] for x in range(10)), empty)
self.assertEqual(empty, [])
xs = [complex(random.random() - .5, random.random() - .5)
for _ in range(10000)]
self.assertEqual(sum(xs), complex(sum(z.real for z in xs),
sum(z.imag for z in xs)))
@requires_IEEE_754
@unittest.skipIf(HAVE_DOUBLE_ROUNDING,
"sum accuracy not guaranteed on machines with double rounding")
@ -1775,6 +1780,10 @@ class BuiltinTest(unittest.TestCase):
def test_sum_accuracy(self):
self.assertEqual(sum([0.1] * 10), 1.0)
self.assertEqual(sum([1.0, 10E100, 1.0, -10E100]), 2.0)
self.assertEqual(sum([1.0, 10E100, 1.0, -10E100, 2j]), 2+2j)
self.assertEqual(sum([2+1j, 10E100j, 1j, -10E100j]), 2+2j)
self.assertEqual(sum([1j, 1, 10E100j, 1j, 1.0, -10E100j]), 2+2j)
self.assertEqual(sum([0.1j]*10 + [fractions.Fraction(1, 10)]), 0.1+1j)
def test_type(self):
self.assertEqual(type(''), type('123'))

View File

@ -0,0 +1,2 @@
Added specialization for summation of complexes, this also improves accuracy
of builtin :func:`sum` for such inputs. Patch by Sergey B Kirpichev.

View File

@ -2516,6 +2516,49 @@ Without arguments, equivalent to locals().\n\
With an argument, equivalent to object.__dict__.");
/* Improved KahanBabuška algorithm by Arnold Neumaier
Neumaier, A. (1974), Rundungsfehleranalyse einiger Verfahren
zur Summation endlicher Summen. Z. angew. Math. Mech.,
54: 39-51. https://doi.org/10.1002/zamm.19740540106
https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Further_enhancements
*/
typedef struct {
double hi; /* high-order bits for a running sum */
double lo; /* a running compensation for lost low-order bits */
} CompensatedSum;
static inline CompensatedSum
cs_from_double(double x)
{
return (CompensatedSum) {x};
}
static inline CompensatedSum
cs_add(CompensatedSum total, double x)
{
double t = total.hi + x;
if (fabs(total.hi) >= fabs(x)) {
total.lo += (total.hi - t) + x;
}
else {
total.lo += (x - t) + total.hi;
}
return (CompensatedSum) {t, total.lo};
}
static inline double
cs_to_double(CompensatedSum total)
{
/* Avoid losing the sign on a negative result,
and don't let adding the compensation convert
an infinite or overflowed sum to a NaN. */
if (total.lo && isfinite(total.lo)) {
return total.hi + total.lo;
}
return total.hi;
}
/*[clinic input]
sum as builtin_sum
@ -2628,8 +2671,7 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
}
if (PyFloat_CheckExact(result)) {
double f_result = PyFloat_AS_DOUBLE(result);
double c = 0.0;
CompensatedSum re_sum = cs_from_double(PyFloat_AS_DOUBLE(result));
Py_SETREF(result, NULL);
while(result == NULL) {
item = PyIter_Next(iter);
@ -2637,28 +2679,10 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
Py_DECREF(iter);
if (PyErr_Occurred())
return NULL;
/* Avoid losing the sign on a negative result,
and don't let adding the compensation convert
an infinite or overflowed sum to a NaN. */
if (c && isfinite(c)) {
f_result += c;
}
return PyFloat_FromDouble(f_result);
return PyFloat_FromDouble(cs_to_double(re_sum));
}
if (PyFloat_CheckExact(item)) {
// Improved KahanBabuška algorithm by Arnold Neumaier
// Neumaier, A. (1974), Rundungsfehleranalyse einiger Verfahren
// zur Summation endlicher Summen. Z. angew. Math. Mech.,
// 54: 39-51. https://doi.org/10.1002/zamm.19740540106
// https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Further_enhancements
double x = PyFloat_AS_DOUBLE(item);
double t = f_result + x;
if (fabs(f_result) >= fabs(x)) {
c += (f_result - t) + x;
} else {
c += (x - t) + f_result;
}
f_result = t;
re_sum = cs_add(re_sum, PyFloat_AS_DOUBLE(item));
_Py_DECREF_SPECIALIZED(item, _PyFloat_ExactDealloc);
continue;
}
@ -2667,15 +2691,70 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
int overflow;
value = PyLong_AsLongAndOverflow(item, &overflow);
if (!overflow) {
f_result += (double)value;
re_sum.hi += (double)value;
Py_DECREF(item);
continue;
}
}
if (c && isfinite(c)) {
f_result += c;
result = PyFloat_FromDouble(cs_to_double(re_sum));
if (result == NULL) {
Py_DECREF(item);
Py_DECREF(iter);
return NULL;
}
result = PyFloat_FromDouble(f_result);
temp = PyNumber_Add(result, item);
Py_DECREF(result);
Py_DECREF(item);
result = temp;
if (result == NULL) {
Py_DECREF(iter);
return NULL;
}
}
}
if (PyComplex_CheckExact(result)) {
Py_complex z = PyComplex_AsCComplex(result);
CompensatedSum re_sum = cs_from_double(z.real);
CompensatedSum im_sum = cs_from_double(z.imag);
Py_SETREF(result, NULL);
while (result == NULL) {
item = PyIter_Next(iter);
if (item == NULL) {
Py_DECREF(iter);
if (PyErr_Occurred()) {
return NULL;
}
return PyComplex_FromDoubles(cs_to_double(re_sum),
cs_to_double(im_sum));
}
if (PyComplex_CheckExact(item)) {
z = PyComplex_AsCComplex(item);
re_sum = cs_add(re_sum, z.real);
im_sum = cs_add(im_sum, z.imag);
Py_DECREF(item);
continue;
}
if (PyLong_Check(item)) {
long value;
int overflow;
value = PyLong_AsLongAndOverflow(item, &overflow);
if (!overflow) {
re_sum.hi += (double)value;
im_sum.hi += 0.0;
Py_DECREF(item);
continue;
}
}
if (PyFloat_Check(item)) {
double value = PyFloat_AS_DOUBLE(item);
re_sum.hi += value;
im_sum.hi += 0.0;
_Py_DECREF_SPECIALIZED(item, _PyFloat_ExactDealloc);
continue;
}
result = PyComplex_FromDoubles(cs_to_double(re_sum),
cs_to_double(im_sum));
if (result == NULL) {
Py_DECREF(item);
Py_DECREF(iter);