mirror of https://github.com/python/cpython
gh-121149: improve accuracy of builtin sum() for complex inputs (gh-121176)
This commit is contained in:
parent
cecd6012b0
commit
d4faa7bd32
|
@ -1934,6 +1934,10 @@ are always available. They are listed here in alphabetical order.
|
|||
.. versionchanged:: 3.12 Summation of floats switched to an algorithm
|
||||
that gives higher accuracy and better commutativity on most builds.
|
||||
|
||||
.. versionchanged:: 3.14
|
||||
Added specialization for summation of complexes,
|
||||
using same algorithm as for summation of floats.
|
||||
|
||||
|
||||
.. class:: super()
|
||||
super(type, object_or_type=None)
|
||||
|
|
|
@ -1768,6 +1768,11 @@ class BuiltinTest(unittest.TestCase):
|
|||
sum(([x] for x in range(10)), empty)
|
||||
self.assertEqual(empty, [])
|
||||
|
||||
xs = [complex(random.random() - .5, random.random() - .5)
|
||||
for _ in range(10000)]
|
||||
self.assertEqual(sum(xs), complex(sum(z.real for z in xs),
|
||||
sum(z.imag for z in xs)))
|
||||
|
||||
@requires_IEEE_754
|
||||
@unittest.skipIf(HAVE_DOUBLE_ROUNDING,
|
||||
"sum accuracy not guaranteed on machines with double rounding")
|
||||
|
@ -1775,6 +1780,10 @@ class BuiltinTest(unittest.TestCase):
|
|||
def test_sum_accuracy(self):
|
||||
self.assertEqual(sum([0.1] * 10), 1.0)
|
||||
self.assertEqual(sum([1.0, 10E100, 1.0, -10E100]), 2.0)
|
||||
self.assertEqual(sum([1.0, 10E100, 1.0, -10E100, 2j]), 2+2j)
|
||||
self.assertEqual(sum([2+1j, 10E100j, 1j, -10E100j]), 2+2j)
|
||||
self.assertEqual(sum([1j, 1, 10E100j, 1j, 1.0, -10E100j]), 2+2j)
|
||||
self.assertEqual(sum([0.1j]*10 + [fractions.Fraction(1, 10)]), 0.1+1j)
|
||||
|
||||
def test_type(self):
|
||||
self.assertEqual(type(''), type('123'))
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
Added specialization for summation of complexes, this also improves accuracy
|
||||
of builtin :func:`sum` for such inputs. Patch by Sergey B Kirpichev.
|
|
@ -2516,6 +2516,49 @@ Without arguments, equivalent to locals().\n\
|
|||
With an argument, equivalent to object.__dict__.");
|
||||
|
||||
|
||||
/* Improved Kahan–Babuška algorithm by Arnold Neumaier
|
||||
Neumaier, A. (1974), Rundungsfehleranalyse einiger Verfahren
|
||||
zur Summation endlicher Summen. Z. angew. Math. Mech.,
|
||||
54: 39-51. https://doi.org/10.1002/zamm.19740540106
|
||||
https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Further_enhancements
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
double hi; /* high-order bits for a running sum */
|
||||
double lo; /* a running compensation for lost low-order bits */
|
||||
} CompensatedSum;
|
||||
|
||||
static inline CompensatedSum
|
||||
cs_from_double(double x)
|
||||
{
|
||||
return (CompensatedSum) {x};
|
||||
}
|
||||
|
||||
static inline CompensatedSum
|
||||
cs_add(CompensatedSum total, double x)
|
||||
{
|
||||
double t = total.hi + x;
|
||||
if (fabs(total.hi) >= fabs(x)) {
|
||||
total.lo += (total.hi - t) + x;
|
||||
}
|
||||
else {
|
||||
total.lo += (x - t) + total.hi;
|
||||
}
|
||||
return (CompensatedSum) {t, total.lo};
|
||||
}
|
||||
|
||||
static inline double
|
||||
cs_to_double(CompensatedSum total)
|
||||
{
|
||||
/* Avoid losing the sign on a negative result,
|
||||
and don't let adding the compensation convert
|
||||
an infinite or overflowed sum to a NaN. */
|
||||
if (total.lo && isfinite(total.lo)) {
|
||||
return total.hi + total.lo;
|
||||
}
|
||||
return total.hi;
|
||||
}
|
||||
|
||||
/*[clinic input]
|
||||
sum as builtin_sum
|
||||
|
||||
|
@ -2628,8 +2671,7 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
|
|||
}
|
||||
|
||||
if (PyFloat_CheckExact(result)) {
|
||||
double f_result = PyFloat_AS_DOUBLE(result);
|
||||
double c = 0.0;
|
||||
CompensatedSum re_sum = cs_from_double(PyFloat_AS_DOUBLE(result));
|
||||
Py_SETREF(result, NULL);
|
||||
while(result == NULL) {
|
||||
item = PyIter_Next(iter);
|
||||
|
@ -2637,28 +2679,10 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
|
|||
Py_DECREF(iter);
|
||||
if (PyErr_Occurred())
|
||||
return NULL;
|
||||
/* Avoid losing the sign on a negative result,
|
||||
and don't let adding the compensation convert
|
||||
an infinite or overflowed sum to a NaN. */
|
||||
if (c && isfinite(c)) {
|
||||
f_result += c;
|
||||
}
|
||||
return PyFloat_FromDouble(f_result);
|
||||
return PyFloat_FromDouble(cs_to_double(re_sum));
|
||||
}
|
||||
if (PyFloat_CheckExact(item)) {
|
||||
// Improved Kahan–Babuška algorithm by Arnold Neumaier
|
||||
// Neumaier, A. (1974), Rundungsfehleranalyse einiger Verfahren
|
||||
// zur Summation endlicher Summen. Z. angew. Math. Mech.,
|
||||
// 54: 39-51. https://doi.org/10.1002/zamm.19740540106
|
||||
// https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Further_enhancements
|
||||
double x = PyFloat_AS_DOUBLE(item);
|
||||
double t = f_result + x;
|
||||
if (fabs(f_result) >= fabs(x)) {
|
||||
c += (f_result - t) + x;
|
||||
} else {
|
||||
c += (x - t) + f_result;
|
||||
}
|
||||
f_result = t;
|
||||
re_sum = cs_add(re_sum, PyFloat_AS_DOUBLE(item));
|
||||
_Py_DECREF_SPECIALIZED(item, _PyFloat_ExactDealloc);
|
||||
continue;
|
||||
}
|
||||
|
@ -2667,15 +2691,70 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
|
|||
int overflow;
|
||||
value = PyLong_AsLongAndOverflow(item, &overflow);
|
||||
if (!overflow) {
|
||||
f_result += (double)value;
|
||||
re_sum.hi += (double)value;
|
||||
Py_DECREF(item);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
if (c && isfinite(c)) {
|
||||
f_result += c;
|
||||
result = PyFloat_FromDouble(cs_to_double(re_sum));
|
||||
if (result == NULL) {
|
||||
Py_DECREF(item);
|
||||
Py_DECREF(iter);
|
||||
return NULL;
|
||||
}
|
||||
result = PyFloat_FromDouble(f_result);
|
||||
temp = PyNumber_Add(result, item);
|
||||
Py_DECREF(result);
|
||||
Py_DECREF(item);
|
||||
result = temp;
|
||||
if (result == NULL) {
|
||||
Py_DECREF(iter);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (PyComplex_CheckExact(result)) {
|
||||
Py_complex z = PyComplex_AsCComplex(result);
|
||||
CompensatedSum re_sum = cs_from_double(z.real);
|
||||
CompensatedSum im_sum = cs_from_double(z.imag);
|
||||
Py_SETREF(result, NULL);
|
||||
while (result == NULL) {
|
||||
item = PyIter_Next(iter);
|
||||
if (item == NULL) {
|
||||
Py_DECREF(iter);
|
||||
if (PyErr_Occurred()) {
|
||||
return NULL;
|
||||
}
|
||||
return PyComplex_FromDoubles(cs_to_double(re_sum),
|
||||
cs_to_double(im_sum));
|
||||
}
|
||||
if (PyComplex_CheckExact(item)) {
|
||||
z = PyComplex_AsCComplex(item);
|
||||
re_sum = cs_add(re_sum, z.real);
|
||||
im_sum = cs_add(im_sum, z.imag);
|
||||
Py_DECREF(item);
|
||||
continue;
|
||||
}
|
||||
if (PyLong_Check(item)) {
|
||||
long value;
|
||||
int overflow;
|
||||
value = PyLong_AsLongAndOverflow(item, &overflow);
|
||||
if (!overflow) {
|
||||
re_sum.hi += (double)value;
|
||||
im_sum.hi += 0.0;
|
||||
Py_DECREF(item);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
if (PyFloat_Check(item)) {
|
||||
double value = PyFloat_AS_DOUBLE(item);
|
||||
re_sum.hi += value;
|
||||
im_sum.hi += 0.0;
|
||||
_Py_DECREF_SPECIALIZED(item, _PyFloat_ExactDealloc);
|
||||
continue;
|
||||
}
|
||||
result = PyComplex_FromDoubles(cs_to_double(re_sum),
|
||||
cs_to_double(im_sum));
|
||||
if (result == NULL) {
|
||||
Py_DECREF(item);
|
||||
Py_DECREF(iter);
|
||||
|
|
Loading…
Reference in New Issue